Model existence theorems for modal and intuitionistic logics

1973 ◽  
Vol 38 (4) ◽  
pp. 613-627 ◽  
Author(s):  
Melvin Fitting

In classical logic a collection of sets of statements (or equivalently, a property of sets of statements) is called a consistency property if it meets certain simple closure conditions (a definition is given in §2). The simplest example of a consistency property is the collection of all consistent sets in some formal system for classical logic. The Model Existence Theorem then says that any member of a consistency property is satisfiable in a countable domain. From this theorem many basic results of classical logic follow rather simply: completeness theorems, the compactness theorem, the Lowenheim-Skolem theorem, and the Craig interpolation lemma among others. The central position of the theorem in classical logic is obvious. For the infinitary logic the Model Existence Theorem is even more basic as the compactness theorem is not available; [8] is largely based on it.In this paper we define appropriate notions of consistency properties for the first-order modal logics S4, T and K (without the Barcan formula) and for intuitionistic logic. Indeed we define two versions for intuitionistic logic, one deriving from the work of Gentzen, one from Beth; both have their uses. Model Existence Theorems are proved, from which the usual known basic results follow. We remark that Craig interpolation lemmas have been proved model theoretically for these logics by Gabbay ([5], [6]) using ultraproducts. The existence of both ultra-product and consistency property proofs of the same result is a common phenomena in classical and infinitary logic. We also present extremely simple tableau proof systems for S4, T, K and intuitionistic logics, systems whose completeness is an easy consequence of the Model Existence Theorems.

1979 ◽  
Vol 44 (2) ◽  
pp. 147-152
Author(s):  
Judy Green

Consistency properties and their model existence theorems have provided an important method of constructing models for fragments of L∞ω. In [E] Ellentuck extended this construction to Suslin logic. One of his extensions, the Borel consistency property, has its extra rule based not on the semantic interpretation of the extra symbols but rather on a theorem of Sierpinski about the classical operation . In this paper we extend that consistency property to the game logic LG and use it to show how one can extend results about and its countable fragments to LG and certain of its countable fragments. The particular formation of LG which we use will allow in the game quantifier infinite alternation of countable conjunctions and disjunctions as well as infinite alternation of quantifiers. In this way LG can be viewed as an extension of Suslin logic.


1980 ◽  
Vol 3 (2) ◽  
pp. 157-170
Author(s):  
Grażyna Mirkowska

The paper is a continuation of the considerations connected with non-deterministic algorithmic logic. We will formulate a Hilbert style axiomatization basing on the analogous one defined for algorithmic logic. The main result is the theorem asserting that every consistent non-deterministic algorithmic theory possesses a model.


2014 ◽  
Vol 25 (1) ◽  
pp. 83-134 ◽  
Author(s):  
NORIHIRO KAMIDE

In this paper, we prove some embedding theorems for LTL (linear-time temporal logic) and its variants:viz. some generalisations, extensions and fragments of LTL. Using these embedding theorems, we give uniform proofs of the completeness, cut-elimination and/or decidability theorems for LTL and its variants. The proposed embedding theorems clarify the relationships between some LTL-variations (for example, LTL, a dynamic topological logic, a fixpoint logic, a spatial logic, Prior's logic, Davies' logic and an NP-complete LTL) and some traditional logics (for example, classical logic, intuitionistic logic and infinitary logic).


2018 ◽  
Vol 29 (8) ◽  
pp. 1177-1216
Author(s):  
CHUCK LIANG

This article presents a unified logic that combines classical logic, intuitionistic logic and affine linear logic (restricting contraction but not weakening). We show that this unification can be achieved semantically, syntactically and in the computational interpretation of proofs. It extends our previous work in combining classical and intuitionistic logics. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. We define a phase semantics for this logic that naturally extends the Kripke semantics of intuitionistic logic. We present a sequent calculus with novel structural rules, which entail a more elaborate procedure for cut elimination. Computationally, this system allows affine-linear interpretations of proofs to be combined with classical interpretations, such as the λμ calculus. We show how cut elimination must respect the boundaries between classical and non-classical modes of proof that correspond to delimited control effects.


Sign in / Sign up

Export Citation Format

Share Document