On the unification of classical, intuitionistic and affine logics

2018 ◽  
Vol 29 (8) ◽  
pp. 1177-1216
Author(s):  
CHUCK LIANG

This article presents a unified logic that combines classical logic, intuitionistic logic and affine linear logic (restricting contraction but not weakening). We show that this unification can be achieved semantically, syntactically and in the computational interpretation of proofs. It extends our previous work in combining classical and intuitionistic logics. Compared to linear logic, classical fragments of proofs are better isolated from non-classical fragments. We define a phase semantics for this logic that naturally extends the Kripke semantics of intuitionistic logic. We present a sequent calculus with novel structural rules, which entail a more elaborate procedure for cut elimination. Computationally, this system allows affine-linear interpretations of proofs to be combined with classical interpretations, such as the λμ calculus. We show how cut elimination must respect the boundaries between classical and non-classical modes of proof that correspond to delimited control effects.

2007 ◽  
Vol 17 (5) ◽  
pp. 957-1027 ◽  
Author(s):  
CARSTEN FÜHRMANN ◽  
DAVID PYM

It is well known that weakening and contraction cause naive categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarised briefly herein, we have provided a class of models calledclassical categoriesthat is sound and complete and avoids this collapse by interpreting cut reduction by a poset enrichment. Examples of classical categories include boolean lattices and the category of sets and relations, where both conjunction and disjunction are modelled by the set-theoretic product. In this article, which is self-contained, we present an improved axiomatisation of classical categories, together with a deep exploration of their structural theory. Observing that the collapse already happens in the absence of negation, we start with negation-free models calledDummett categories. Examples of these include, besides the classical categories mentioned above, the category of sets and relations, where both conjunction and disjunction are modelled by the disjoint union. We prove that Dummett categories are MIX, and that the partial order can be derived from hom-semilattices, which have a straightforward proof-theoretic definition. Moreover, we show that the Geometry-of-Interaction construction can be extended from multiplicative linear logic to classical logic by applying it to obtain a classical category from a Dummett category.Along the way, we gain detailed insights into the changes that proofs undergo during cut elimination in the presence of weakening and contraction.


2000 ◽  
Vol 10 (2) ◽  
pp. 277-312 ◽  
Author(s):  
PAUL RUET

Non-commutative logic, which is a unification of commutative linear logic and cyclic linear logic, is extended to all linear connectives: additives, exponentials and constants. We give two equivalent versions of the sequent calculus (directly with the structure of order varieties, and with their presentations as partial orders), phase semantics and a cut-elimination theorem. This involves, in particular, the study of the entropy relation between partial orders, and the introduction of a special class of order varieties: the series–parallel order varieties.


1995 ◽  
Vol 60 (3) ◽  
pp. 861-878 ◽  
Author(s):  
Giovanni Sambin

Pretopologies were introduced in [S], and there shown to give a complete semantics for a propositional sequent calculus BL, here called basic linear logic, as well as for its extensions by structural rules, ex falso quodlibet or double negation. Immediately after Logic Colloquium '88, a conversation with Per Martin-Löf helped me to see how the pretopology semantics should be extended to predicate logic; the result now is a simple and fully constructive completeness proof for first order BL and virtually all its extensions, including the usual, or structured, intuitionistic and classical logic. Such a proof clearly illustrates the fact that stronger set-theoretic principles and classical metalogic are necessary only when completeness is sought with respect to a special class of models, such as the usual two-valued models.To make the paper self-contained, I briefly review in §1 the definition of pretopologies; §2 deals with syntax and §3 with semantics. The completeness proof in §4, though similar in structure, is sensibly simpler than that in [S], and this is why it is given in detail. In §5 it is shown how little is needed to obtain completeness for extensions of BL in the same language. Finally, in §6 connections with proofs with respect to more traditional semantics are briefly investigated, and some open problems are put forward.


2002 ◽  
Vol 67 (1) ◽  
pp. 162-196 ◽  
Author(s):  
Jean-Baptiste Joinet ◽  
Harold Schellinx ◽  
Lorenzo Tortora De Falco

AbstractThe present report is a, somewhat lengthy, addendum to [4], where the elimination of cuts from derivations in sequent calculus for classical logic was studied ‘from the point of view of linear logic’. To that purpose a formulation of classical logic was used, that - as in linear logic - distinguishes between multiplicative and additive versions of the binary connectives.The main novelty here is the observation that this type-distinction is not essential: we can allow classical sequent derivations to use any combination of additive and multiplicative introduction rules for each of the connectives, and still have strong normalization and confluence of tq-reductions.We give a detailed description of the simulation of tq-reductions by means of reductions of the interpretation of any given classical proof as a proof net of PN2 (the system of second order proof nets for linear logic), in which moreover all connectives can be taken to be of one type, e.g., multiplicative.We finally observe that dynamically the different logical cuts, as determined by the four possible combinations of introduction rules, are independent: it is not possible to simulate them internally, i.e.. by only one specific combination, and structural rules.


1991 ◽  
Vol 56 (4) ◽  
pp. 1403-1451 ◽  
Author(s):  
V. Michele Abrusci

The linear logic introduced in [3] by J.-Y. Girard keeps one of the so-called structural rules of the sequent calculus: the exchange rule. In a one-sided sequent calculus this rule can be formulated asThe exchange rule allows one to disregard the order of the assumptions and the order of the conclusions of a proof, and this means, when the proof corresponds to a logically correct program, to disregard the order in which the inputs and the outputs occur in a program.In the linear logic introduced in [3], the exchange rule allows one to prove the commutativity of the multiplicative connectives, conjunction (⊗) and disjunction (⅋). Due to the presence of the exchange rule in linear logic, in the phase semantics for linear logic one starts with a commutative monoid. So, the usual linear logic may be called commutative linear logic.The aim of the investigations underlying this paper was to see, first, what happens when we remove the exchange rule from the sequent calculus for the linear propositional logic at all, and then, how to recover the strength of the exchange rule by means of exponential connectives (in the same way as by means of the exponential connectives ! and ? we recover the strength of the weakening and contraction rules).


1996 ◽  
Vol 61 (2) ◽  
pp. 541-548 ◽  
Author(s):  
Yves Lafont

AbstractRecently, Lincoln, Scedrov and Shankar showed that the multiplicative fragment of second order intuitionistic linear logic is undecidable, using an encoding of second order intuitionistic logic. Their argument applies to the multiplicative-additive fragment, but it does not work in the classical case, because second order classical logic is decidable. Here we show that the multiplicative-additive fragment of second order classical linear logic is also undecidable, using an encoding of two-counter machines originally due to Kanovich. The faithfulness of this encoding is proved by means of the phase semantics.


1991 ◽  
Vol 20 (372) ◽  
Author(s):  
Carolyn Brown ◽  
Doug Gurr

<p>Linear logic differs from intuitionistic logic primarily in the absence of the structural rules of weakening and contraction. Weakening allows us to prove a proposition in the context of irrelevant or unused premises, while contraction allows us to use a premise an arbitrary number of times. Linear logic has been called a ''resource-conscious'' logic, since the premises of a sequent must appear exactly as many times as they are used.</p><p>In this paper, we address this ''experimental nature'' by presenting a non-commutative intuitionistic linear logic with several attractive properties. Our logic discards even the limited commutativityof Yetter's logic in which cyclic permutations of formulae are permitted. It arises in a natural way from the system of intuitionistic linear logic presented by Girard and Lafont, and we prove a cut elimination theorem. In linear logic, the rules of weakening and contraction are recovered in a restricted sense by the introduction of the exponential modality(!). This recaptures the expressive power of intuitionistic logic. In our logic the modality ! recovers the non-commutative analogues of these structural rules. However, the most appealing property of our logic is that it is both sound and complete with respect to interpretation in a natural class of models which we call relational quantales.</p>


2019 ◽  
Vol 48 (4) ◽  
Author(s):  
Szymon Chlebowski ◽  
Dorota Leszczyńska-Jasion

We define Kripke semantics for propositional intuitionistic logic with Suszko’s identity (ISCI). We propose sequent calculus for ISCI along with cut-elimination theorem. We sketch a constructive interpretation of Suszko’s propositional identity connective.


2005 ◽  
Vol 70 (4) ◽  
pp. 1108-1126 ◽  
Author(s):  
Greg Restall ◽  
Francesco Paoli

AbstractIn this paper we introduce a new natural deduction system for the logic of lattices, and a number of extensions of lattice logic with different negation connectives. We provide the class of natural deduction proofs with both a standard inductive definition and a global graph-theoretical criterion for correctness, and we show how normalisation in this system corresponds to cut elimination in the sequent calculus for lattice logic. This natural deduction system is inspired both by Shoesmith and Smiley's multiple conclusion systems for classical logic and Girard's proofnets for linear logic.


Author(s):  
Tim Lyon

Abstract This paper studies the relationship between labelled and nested calculi for propositional intuitionistic logic, first-order intuitionistic logic with non-constant domains and first-order intuitionistic logic with constant domains. It is shown that Fitting’s nested calculi naturally arise from their corresponding labelled calculi—for each of the aforementioned logics—via the elimination of structural rules in labelled derivations. The translational correspondence between the two types of systems is leveraged to show that the nested calculi inherit proof-theoretic properties from their associated labelled calculi, such as completeness, invertibility of rules and cut admissibility. Since labelled calculi are easily obtained via a logic’s semantics, the method presented in this paper can be seen as one whereby refined versions of labelled calculi (containing nested calculi as fragments) with favourable properties are derived directly from a logic’s semantics.


Sign in / Sign up

Export Citation Format

Share Document