Definability problems for modules and rings

1971 ◽  
Vol 36 (4) ◽  
pp. 623-649 ◽  
Author(s):  
Gabriel Sabbagh ◽  
Paul Eklof

This paper is concerned with questions of the following kind: let L be a language of the form Lαω and let be a class of modules over a fixed ring or a class of rings; is it possible to define in L? We will be mainly interested in the cases where L is Lωω or L∞ω and is a familiar class in homologic algebra or ring theory.In Part I we characterize the rings Λ such that the class of free (respectively projective, respectively flat) left Λ-modules is elementary. In [12] we solved the corresponding problems for injective modules; here we show that the class of injective Λ-modules is definable in L∞ω if and only if it is elementary. Moreover we identify the right noetherian rings Λ such that the class of projective (respectively free) left Λ-modules is definable in L∞ω.

1969 ◽  
Vol 21 ◽  
pp. 1496-1505
Author(s):  
A. J. Douglas

Throughout this paper, S will be a ring (not necessarily commutative) with an identity element ls ≠ 0s. We shall use R to denote a second ring, and ϕ: S→ R will be a fixed ring homomorphism for which ϕ1S = 1R.In (7), Higman generalized the Casimir operator of classical theory and used his generalization to characterize relatively projective and injective modules. As a special case, he obtained a theorem which contains results of Eckmann (3) and of Higman himself (5), and which also includes Gaschütz's generalization (4) of Maschke's theorem. (For a discussion of some of the developments of Maschke's idea of averaging over a finite group, we refer the reader to (2, Chapter IX).) In the present paper, we define the Casimir operator of a family of S-homomorphisms of one R-module into another, and we again use this operator to characterize relatively projective and injective modules.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


Author(s):  
P. F. Smith

SynopsisFor various classes of right noetherian rings it is shown that projective right modules are either finitely generated or free.


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2008 ◽  
Vol 07 (06) ◽  
pp. 809-830
Author(s):  
VERA PUNINSKAYA ◽  
CARLO TOFFALORI

We investigate width and Krull–Gabriel dimension over commutative Noetherian rings which are "tame" according to the Klingler–Levy analysis in [4–6], in particular over Dedekind-like rings and their homomorphic images. We show that both are undefined in most cases.


2004 ◽  
Vol 120 (4) ◽  
pp. 1583-1590
Author(s):  
A. I. Generalov ◽  
I. M. Zilberbord

2013 ◽  
Vol 50 (5) ◽  
pp. 1051-1066 ◽  
Author(s):  
Jun Zhang ◽  
Fanggui Wang ◽  
Hwankoo Kim

1985 ◽  
Vol 97 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Tetsushi Ogoma

The notion of fibre product in a category is quite basic and has been studied by many authors. Also in ring theory, it is known that the fibre product is useful in the construction of examples. (See for example [3], [4] and references of [1].) Unfortunately, most such examples are non-noetherian and so are unsatisfactory from the viewpoint of commutative algebra.


Sign in / Sign up

Export Citation Format

Share Document