Fibre products of Noetherian rings and their applications

1985 ◽  
Vol 97 (2) ◽  
pp. 231-241 ◽  
Author(s):  
Tetsushi Ogoma

The notion of fibre product in a category is quite basic and has been studied by many authors. Also in ring theory, it is known that the fibre product is useful in the construction of examples. (See for example [3], [4] and references of [1].) Unfortunately, most such examples are non-noetherian and so are unsatisfactory from the viewpoint of commutative algebra.

1971 ◽  
Vol 36 (4) ◽  
pp. 623-649 ◽  
Author(s):  
Gabriel Sabbagh ◽  
Paul Eklof

This paper is concerned with questions of the following kind: let L be a language of the form Lαω and let be a class of modules over a fixed ring or a class of rings; is it possible to define in L? We will be mainly interested in the cases where L is Lωω or L∞ω and is a familiar class in homologic algebra or ring theory.In Part I we characterize the rings Λ such that the class of free (respectively projective, respectively flat) left Λ-modules is elementary. In [12] we solved the corresponding problems for injective modules; here we show that the class of injective Λ-modules is definable in L∞ω if and only if it is elementary. Moreover we identify the right noetherian rings Λ such that the class of projective (respectively free) left Λ-modules is definable in L∞ω.


Author(s):  
Matthias Aschenbrenner ◽  
Lou van den Dries ◽  
Joris van der Hoeven

This chapter provides a background on commutative algebra and gives a self-contained proof of Johnson's Theorem 5.9.1 on regular solutions of systems of algebraic differential equations. It presents the facts on regular local rings and Kähler differentials needed for Theorem 5.9.1. It also recalls a common notational convention concerning a commutative ring R and an R-module M, with U and V as additive subgroups of R and M. Other topics include the Zariski topology, noetherian rings and spaces, rings and modules of finite length, integral extensions and integrally closed domains, Krull's Principal Ideal Theorem, differentials, and derivations on field extensions.


2006 ◽  
Vol 49 (2) ◽  
pp. 296-312 ◽  
Author(s):  
Matthias Schütt

AbstractThis paper investigates the modularity of three non-rigid Calabi–Yau threefolds with bad reduction at 11. They are constructed as fibre products of rational elliptic surfaces, involving the modular elliptic surface of level 5. Their middle ℓ-adic cohomology groups are shown to split into two-dimensional pieces, all but one of which can be interpreted in terms of elliptic curves. The remaining pieces are associated to newforms of weight 4 and level 22 or 55, respectively. For this purpose, we develop a method by Serre to compare the corresponding two-dimensional 2-adic Galois representations with uneven trace. Eventually this method is also applied to a self fibre product of the Hesse-pencil, relating it to a newform of weight 4 and level 27.


Author(s):  
A. W. Chatters

We introduce a concept of unique factorization for elements in the context of Noetherian rings which are not necessarily commutative. We will call an element p of such a ring R prime if (i) pR = Rp, (ii) pR is a height-1 prime ideal of R, and (iii) R/pR is an integral domain. We define a Noetherian u.f.d. to be a Noetherian integral domain R such that every height-1 prime P of R is principal and R/P is a domain, or equivalently every non-zero element of R is of the form cq, where q is a product of prime elements of R and c has no prime factors. Examples include the Noetherian u.f.d.'s of commutative algebra and also the universal enveloping algebras of solvable Lie algebras. The latter class provides a rich supply of genuinely non-commutative examples.


2015 ◽  
Vol 4 (1) ◽  
Author(s):  
Hossein Aminikhah ◽  
A. Refahi Sheikhani ◽  
Hadi Rezazadeh

AbstractIn this paper, we apply the first integral method to study the solutions of the nonlinear fractional modified Benjamin-Bona-Mahony equation, the nonlinear fractional modified Zakharov-Kuznetsov equation and the nonlinear fractional Whitham-Broer-Kaup-Like systems. This method is based on the ring theory of commutative algebra. The results obtained by the proposed method show that the approach is effective and general. This approach can also be applied to other nonlinear fractional differential equations, which are arising in the theory of solitons and other areas.


Author(s):  
Rodney Y. Sharp

The theory of dualizing complexes of Grothendieck and Hartshorne ((5), chapter v) has turned out to be a useful tool even in commutative algebra. For instance, Peskine and Szpiro used dualizing complexes in their (partial) solution of Bass's conjecture concerning finitely-generated (f.-g.) modules of finite injective dimension over a Noetherian local ring ((7), chapitre I, §5); and the present author first obtained the results in (9) by using dualizing complexes.


2021 ◽  
pp. 77-102
Author(s):  
Peter Schuster ◽  
Daniel Wessel

AbstractKrull’s Maximal Ideal Theorem (MIT) is one of the most prominent incarnations of the Axiom of Choice (AC) in ring theory. For many a consequence of AC, constructive counterparts are well within reach, provided attention is turned to the syntactical underpinning of the problem at hand. This is one of the viewpoints of the revised Hilbert Programme in commutative algebra, which will here be carried out for MIT and several related classical principles.


1989 ◽  
Vol 31 (1) ◽  
pp. 103-113 ◽  
Author(s):  
D. A. Jordan

In the literature there are several generalisations to non-commutative rings of the notion of a unique factorisation domain from commutative algebra. This paper follows in the spirit of [1, 3] and is set in the context of Noetherian rings. In [3], A. W. Chatters and the author denned a Noetherian UFR (unique factorisation ring) to be a prime Noetherian ring R in which every non-zero prime ideal contains a prime ideal generated by a non-zero normal element p, that is, by an element p such that pR = Rp. The class of Noetherian UFRs includes the Noetherian UFDs studied by Chatters in [1], while a commutative Noetherian ring is a UFR if and only if it is a UFD in the usual sense. For a Noetherian UFR R, the following are simple consequences of the definition:(i) every non-zero ideal of R contains a non-zero normal element;(ii) the set N(R) of non-zero normal elements of R is a unique factorisation monoid in the sense of [4, Chapter 3].


2018 ◽  
Vol 25 (3) ◽  
pp. 312-322
Author(s):  
Olga V. Oreshkina (Nikol’skaya)

The Hodge, Tate and Mumford-Tate conjectures are proved for the fibre product of two non-isotrivial 1-parameter families of regular surfaces with geometric genus 1 under some conditions on degenerated fibres, the ranks of the N\'eron - Severi groups of generic geometric fibres and representations of Hodge groups in transcendental parts of rational cohomology.Let \(\pi_i:X_i\to C\quad (i = 1, 2)\) be a projective non-isotrivial family (possibly with degeneracies) over a smooth projective curve \(C\). Assume that the discriminant loci \(\Delta_i=\{\delta\in C\,\,\vert\,\, Sing(X_{i\delta})\neq\varnothing\} \quad (i = 1, 2)\) are disjoint, \(h^{2,0}(X_{ks})=1,\quad h^{1,0}(X_{ks}) = 0\) for any smooth fibre \(X_{ks}\), and the following conditions hold:\((i)\) for any point \(\delta \in \Delta_i\) and the Picard-Lefschetz transformation \( \gamma \in GL(H^2 (X_{is}, Q)) \), associated with a smooth part \(\pi'_i: X'_i\to C\setminus\Delta_i\) of the morphism \(\pi_i\) and with a loop around the point \(\delta \in C\), we have \((\log(\gamma))^2\neq0\);\((ii)\) the variety \(X_i \, (i = 1, 2)\), the curve \(C\) and the structure morphisms \(\pi_i:X_i\to C\) are defined over a finitely generated subfield \(k \hookrightarrow C\).If for generic geometric fibres \(X_{1s}\) \, and \, \(X_{2s}\) at least one of the following conditions holds: \((a)\) \(b_2(X_{1s})- rank NS(X_{1s})\) is an odd prime number, \(\quad\,\,\) \(b_2(X_{1s})- rank NS(X_{1s})\neq b_2(X_{2s})- rank NS(X_{2s})\); \((b)\) the ring \(End_{ Hg(X_{1s})} NS_ Q(X_{1s})^\perp\) is an imaginary quadratic field, \(\quad\,\, b_2(X_{1s})- rank NS(X_{1s})\neq 4,\) \(\quad\,\, End_{ Hg(X_{2s})} NS_ Q(X_{2s})^\perp\) is a totally real field or \(\,\, b_2(X_{1s})- rank NS(X_{1s})\,>\, b_2(X_{2s})- rank NS(X_{2s})\) ; \((c)\) \([b_2(X_{1s})- rank NS(X_{1s})\neq 4, \, End_{ Hg(X_{1s})} NS_ Q(X_{1s})^\perp= Q\); \(\quad\,\,\) \(b_2(X_{1s})- rank NS(X_{1s})\neq b_2(X_{2s})- rank NS(X_{2s})\),then for the fibre product \(X_1 \times_C X_2\) the Hodge conjecture is true, for any smooth projective \(k\)-variety \(X_0\) with the condition \(X_1 \times_C X_2\) \(\widetilde{\rightarrow}\) \(X_0 \otimes_k C\) the Tate conjecture on algebraic cycles and the Mumford-Tate conjecture for cohomology of even degree are true.


Sign in / Sign up

Export Citation Format

Share Document