Relation of Leśniewski's mereology to Boolean algebra

1974 ◽  
Vol 39 (4) ◽  
pp. 638-648 ◽  
Author(s):  
Robert E. Clay

It has been stated by Tarski [5] and “proved” by Grzegorczyk [3] that: (A) The models of mereology and the models of complete Boolean algebra with zero deleted are identical.Proved has been put in quotes, not because Grzegorczyk's proof is faulty but because the system he describes as mereology is in fact not Leśniewski's mereology.Leśniewski's first attempt at describing the collective class, i.e. mereology, was done in ordinary language with no rigorous logical foundation. In describing the collective class, he needed to use the notion of distributive class. So as to clearly distinguish and expose the interplay between the two notions of class, he introduced his calculus of name (name being the distributive notion), which is also called ontology, since he used the primitive term “is.” At this stage, mereology included ontology. Then, in order to have a logically rigorous system, he developed as a basis, a propositional calculus with quantifiers and semantical categories (types), called protothetic. At this final stage, what is properly called mereology includes both protothetic and ontology.What Grzegorczyk describes as mereology is even weaker than Leśniewski's initial version. To quote from [3]: “In order to emphasize these formal relations let us consider the systems of axioms of mereology for another of its primitive terms, namely for the term “ingr” defined as follows:A ingr B.≡.A is a part B ∨ A is identical to B.The proposition “A ingr B” can be read “A is contained in B” or after Leśniewski, “A is ingredient of B”.”


2008 ◽  
Vol 73 (4) ◽  
pp. 1433-1457 ◽  
Author(s):  
Miloš S. Kurilić ◽  
Boris Šobot

AbstractThe game is played on a complete Boolean algebra , by two players. White and Black, in κ-many moves (where κ is an infinite cardinal). At the beginning White chooses a non-zero element p ∈ . In the α-th move White chooses pα ∈ (0, p) and Black responds choosing iα ∈{0, 1}. White winsthe play iff . where and .The corresponding game theoretic properties of c.B.a.'s are investigated. So, Black has a winning strategy (w.s.) if κ ≥ π() or if contains a κ-closed dense subset. On the other hand, if White has a w.s., then κ ∈ . The existence of w.s. is characterized in a combinatorial way and in terms of forcing. In particular, if 2<κ = κ ∈ Reg and forcing by preserves the regularity of κ, then White has a w.s. iff the power 2κ is collapsed to κ in some extension. It is shown that, under the GCH, for each set S ⊆ Reg there is a c.B.a. such that White (respectively. Black) has a w.s. for each infinite cardinal κ ∈ S (resp. κ ∉ S). Also it is shown consistent that for each κ ∈ Reg there is a c.B.a. on which the game is undetermined.



1996 ◽  
Vol 182 (3) ◽  
pp. 748-755 ◽  
Author(s):  
Thomas Jech ◽  
Saharon Shelah


1987 ◽  
Vol 52 (2) ◽  
pp. 530-542
Author(s):  
R. Michael Canjar

Throughout this paper, B will always be a Boolean algebra and Γ an ultrafilter on B. We use + and Σ for the Boolean join operation and · and Π for the Boolean meet.κ is always a regular cardinal. C(κ) is the full structure of κ, the structure with universe κ and whose functions and relations consist of all unitary functions and relations on κ. κB is the collection of all B-valued names for elements of κ. We use symbols f, g, h for members of κB. Formally an element f ∈ κB is a mapping κ → B with the properties that Σα∈κf(α) = 1B and that f(α) · f(β) = 0B whenever α ≠ β. We view f(α) as the Boolean-truth value indicating the extent to which the name f is equal to α, and we will hereafter write ∥f = α∥ for f(α). For every α ∈ κ there is a canonical name fα ∈ κB which has the property that ∥fα = α∥ = 1. Hereafter we identify α and fα.If B is a κ+-complete Boolean algebra and Γ is an ultrafilter on B, then we may define the Boolean ultraproduct C(κ)B/Γ in the following manner. If ϕ(x0, x1, …, xn) is a formula of Lκ, the language for C(κ) (which has symbols for all finitary functions and relations on κ), and f0, f1, …, fn−1 are elements of κB then we define the Boolean-truth value of ϕ(f0, f1, …, fn−1) as



1978 ◽  
Vol 19 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Dorothy Maharam ◽  
A.H. Stone

Let C(X) denote the complete boolean algebra of Borel sets modulo first category sets of the space X. Given an isomorphism τ between C(X) and C(Y), where X and Y are complete metric spaces, it is shown that there exists a homeomorphism T, between residual subsets A of X and B of Y, that induces τ. When X = Y one can make A = B. An analogous result is stated when τ is a complete isomorphism onto a subalgebra.



2005 ◽  
Vol 70 (1) ◽  
pp. 282-318
Author(s):  
Lars Hansen

AbstractThe purpose of this paper is to present an algebraic generalization of the traditional two-valued logic. This involves introducing a theory of automorphism algebras, which is an algebraic theory of many-valued logic having a complete lattice as the set of truth values. Two generalizations of the two-valued case will be considered, viz., the finite chain and the Boolean lattice. In the case of the Boolean lattice, on choosing a designated lattice value, this algebra has binary retracts that have the usual axiomatic theory of the propositional calculus as suitable theory. This suitability applies to the Boolean algebra of formalized token models [2] where the truth values are, for example, vocabularies. Finally, as the actual motivation for this paper, we indicate how the theory of formalized token models [2] is an example of a many-valued predicate calculus.



2003 ◽  
Vol 67 (2) ◽  
pp. 297-303 ◽  
Author(s):  
J. Bonet ◽  
W. J. Ricker

Conditions are presented which ensure that an abstractly σ-complete Boolean algebra of projections on a (DF)-space or on an (LF)-space is necessarily equicontinuous and/or the range of a spectral measure. This is an extension, to a large and important class of locally convex spaces, of similar and well known results due to W. Bade (respectively, B. Walsh) in the setting of normed (respectively metrisable) spaces.



Filomat ◽  
2016 ◽  
Vol 30 (13) ◽  
pp. 3389-3395
Author(s):  
Milos Kurilic ◽  
Boris Sobot

The games G2 and G3 are played on a complete Boolean algebra B in ?-many moves. At the beginning White picks a non-zero element p of B and, in the n-th move, White picks a positive pn < p and Black chooses an in ? {0,1}. White wins G2 iff lim inf pin,n = 0 and wins G3 iff W A?[?]? ? n?A pin,n = 0. It is shown that White has a winning strategy in the game G2 iff White has a winning strategy in the cut-and-choose game Gc&c introduced by Jech. Also, White has a winning strategy in the game G3 iff forcing by B produces a subset R of the tree <?2 containing either ??0 or ??1, for each ? ? <?2, and having unsupported intersection with each branch of the tree <?2 belonging to V. On the other hand, if forcing by B produces independent (splitting) reals then White has a winning strategy in the game G3 played on B. It is shown that ? implies the existence of an algebra on which these games are undetermined.



Sign in / Sign up

Export Citation Format

Share Document