Bad models in nice neighborhoods

1986 ◽  
Vol 51 (4) ◽  
pp. 1043-1055 ◽  
Author(s):  
Terry Millar

This paper contains an example of a decidable theory which has1) only a countable number of countable models (up to isomorphism);2) a decidable saturated model; and3) a countable homogeneous model that is not decidable.By the results in [1] and [2], this can happen if and only if the set of types realized by the homogeneous model (the type spectrum of the model) is not .If Γ and Σ are types of a theory T, define Γ ◁ Σ to mean that any model of T realizing Γ must realize Σ. In [3] a decidable theory is constructed that has only countably many countable models, only recursive types, but whose countable saturated model is not decidable. This is easy to do if the restriction on the number of countable models is lifted; the difficulty arises because the set of types must be recursively complex, and yet sufficiently related to control the number of countable models. In [3] the desired theory T is such thatis a linear order with order type ω*. Also, the set of complete types of T is not . The last feature ensures that the countable saturated model is not decidable; the first feature allows the number of countable models to be controlled.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.



1987 ◽  
Vol 52 (1) ◽  
pp. 129-148 ◽  
Author(s):  
Matt Kaufmann ◽  
James H. Schmerl

This paper is a sequel to our earlier paper [2] entitled Saturation and simple extensions of models of Peano arithmetic. Among other things, we will answer some of the questions that were left open there. In §1 we consider the question of whether there are lofty models of PA which have no recursively saturated, simple extensions. We are still unable to answer this question; but we do show in that section that these models are precisely the lofty models which are not recursively saturated and which are κ-like for some regular κ. In §2 we use diagonal methods to produce minimal models of PA in which the standard cut is recursively definable, and other minimal models in which the standard cut is not recursively definable. In §3 we answer two questions from [2] by exhibiting countable models of PA which, in the terminology of this paper, are uniformly ω-lofty but not continuously ω-lofty and others which are continuously ω-lofty but not recursively saturated. We also construct a model (assuming ◇) which is not recursively saturated but every proper, simple cofinal extension of which is ℵ1-saturated. Finally, in §4 we answer another question from [2] by proving that for regular κ ≥ ℵ1; every κ-saturated model of PA has a κ-saturated proper, simple extension which is not κ+-saturated.Our notation and terminology are quite standard. Anything unfamiliar to the reader and not adequately denned here is probably defined in §1 of [2]. All models considered are models of Peano arithmetic.



1979 ◽  
Vol 44 (3) ◽  
pp. 289-306 ◽  
Author(s):  
Victor Harnik

The central notion of this paper is that of a (conjunctive) game-sentence, i.e., a sentence of the formwhere the indices ki, ji range over given countable sets and the matrix conjuncts are, say, open -formulas. Such game sentences were first considered, independently, by Svenonius [19], Moschovakis [13]—[15] and Vaught [20]. Other references are [1], [3]—[5], [10]—[12]. The following normal form theorem was proved by Vaught (and, in less general forms, by his predecessors).Theorem 0.1. Let L = L0(R). For every -sentence ϕ there is an L0-game sentence Θ such that ⊨′ ∃Rϕ ↔ Θ.(A word about the notations: L0(R) denotes the language obtained from L0 by adding to it the sequence R of logical symbols which do not belong to L0; “⊨′α” means that α is true in all countable models.)0.1 can be restated as follows.Theorem 0.1′. For every-sentence ϕ there is an L0-game sentence Θ such that ⊨ϕ → Θ and for any-sentence ϕ if ⊨ϕ → ϕ and L′ ⋂ L ⊆ L0, then ⊨ Θ → ϕ.(We sketch the proof of the equivalence between 0.1 and 0.1′.0.1 implies 0.1′. This is obvious once we realize that game sentences and their negations satisfy the downward Löwenheim-Skolem theorem and hence, ⊨′α is equivalent to ⊨α whenever α is a boolean combination of and game sentences.



2019 ◽  
Vol 84 (3) ◽  
pp. 1007-1019
Author(s):  
DANUL K. GUNATILLEKA

AbstractWe continue the study of the theories of Baldwin–Shi hypergraphs from [5]. Restricting our attention to when the rank δ is rational valued, we show that each countable model of the theory of a given Baldwin–Shi hypergraph is isomorphic to a generic structure built from some suitable subclass of the original class used in the construction. We introduce a notion of dimension for a model and show that there is a an elementary chain $\left\{ {\mathfrak{M}_\beta :\beta \leqslant \omega } \right\}$ of countable models of the theory of a fixed Baldwin–Shi hypergraph with $\mathfrak{M}_\beta \preccurlyeq \mathfrak{M}_\gamma $ if and only if the dimension of $\mathfrak{M}_\beta $ is at most the dimension of $\mathfrak{M}_\gamma $ and that each countable model is isomorphic to some $\mathfrak{M}_\beta $. We also study the regular types that appear in these theories and show that the dimension of a model is determined by a particular regular type. Further, drawing on a large body of work, we use these structures to give an example of a pseudofinite, ω-stable theory with a nonlocally modular regular type, answering a question of Pillay in [11].



Author(s):  
Terry Millar

AbstractCountable homogeneous models are ‘simple’ objects from a model theoretic point of view. From a recursion theoretic point of view they can be complex. For instance the elementary theory of such a model might be undecidable, or the set of complete types might be recursively complex. Unfortunately even if neither of these conditions holds, such a model still can be undecidable. This paper investigates countable homogeneous models with respect to a weaker notion of decidability called almost decidable. It is shown that for theories that have only countably many type spectra, any countable homogeneous model of such a theory that has a Σ2 type spectrum is almost decidable.



2000 ◽  
Vol 65 (3) ◽  
pp. 969-978 ◽  
Author(s):  
Jean A. Larson

AbstractSuppose that α = γ + δ where γ ≥ δ > 0. Then there is a graph which has no independent set of order type and has no pentagram (a pentagram is a set of five points with all pairs joined by edges). In the notation of Erdős and Rado. who generalized Ramsey's Theorem to this setting.



2019 ◽  
Vol 84 (3) ◽  
pp. 1168-1175
Author(s):  
BYUNGHAN KIM

AbstractIn this article, we prove that if a countable non-${\aleph _0}$-categorical NSOP1 theory with nonforking existence has finitely many countable models, then there is a finite tuple whose own preweight is ω. This result is an extension of a theorem of the author on any supersimple theory.



1987 ◽  
Vol 52 (3) ◽  
pp. 681-688
Author(s):  
Henry A. Kierstead

If σ is the order type of a recursive linear order which has a nontrivial automorphism, we let denote the least complexity in the arithmetical hierarchy such that every recursive order of type σ has a nontrivial automorphism of complexity . In Chapter 16 of his book Linear orderings [R], Rosenstein discussed the problem of determining for certain order types σ. For example Rosenstein proved that , where ζ is the order type of the integers, by constructing a recursive linear order of type ζ which has no nontrivial Σ1-automorphism and showing that every recursive linear order of type ζ has a nontrivial Π1-automorphism. Rosenstein also considered linear orders of order type 2 · η, where 2 is the order type of a two-element chain and η is the order type of the rational numbers. It is easily seen that any recursive linear order of type 2 · η has a nontrivial ⊿2-automorphism; he showed that there is a recursive linear order of type 2 · η that has no nontrivial Σ1-automorphism. This left the question, posed in [R] and also by Lerman and Rosenstein in [LR], of whether or ⊿2. The main result of this article is that :



1986 ◽  
Vol 51 (1) ◽  
pp. 222-224 ◽  
Author(s):  
Julia F. Knight

The complete diagram of a structure , denoted by Dc(), is the set of all sentences true in the structure (, a)a∈. A structure is said to be resplendent if for every sentence θ involving a new relation symbol R in addition to symbols occurring in Dc(), if θ is consistent with Dc(), then there is a relation P on such that (see[1]).Baldwin asked whether a homogeneous recursively saturated structure is necessarily resplendent. Here it is shown that this need not be the case. It is shown that if is an uncountable homogeneous resplendent model of an unstable theory, then must be saturated. The proof is related to the proof in [5] that an uncountable homogeneous recursively saturated model of first order Peano arithmetic must be saturated. The example for Baldwin's question is an uncountable homogeneous model for a particular unstable theory, such that is recursively saturated and omits some type. (The continuum hypothesis is needed to show the existence of such a model in power ℵ1.)The proof of the main result requires two lemmas.



1977 ◽  
Vol 42 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Małgorzata Dubiel

Let L be a countable first-order language and L(Q) be obtained by adjoining an additional quantifier Q. Q is a generalization of the quantifier “there exists uncountably many x such that…” which was introduced by Mostowski in [4]. The logic of this latter quantifier was formalized by Keisler in [2]. Krivine and McAloon [3] considered quantifiers satisfying some but not all of Keisler's axioms. They called a formula φ(x) countable-like iffor every ψ. In Keisler's logic, φ(x) being countable-like is the same as ℳ⊨┐Qxφ(x). The main theorem of [3] states that any countable model ℳ of L[Q] has an elementary extension N, which preserves countable-like formulas but no others, such that the only sets definable in both N and M are those defined by formulas countable-like in M. Suppose C(x) in M is linearly ordered and noncountable-like but with countable-like proper segments. Then in N, C will have new elements greater than all “old” elements but no least new element — otherwise it will be definable in both models. The natural question is whether it is possible to use generalized quantifiers to extend models elementarily in such a way that a noncountable-like formula C will have a minimal new element. There are models and formulas for which it is not possible. For example let M be obtained from a minimal transitive model of ZFC by letting Qxφ(x) mean “there are arbitrarily large ordinals satisfying φ”.



Sign in / Sign up

Export Citation Format

Share Document