Automorphism groups of arithmetically saturated models

2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


2014 ◽  
Vol 79 (2) ◽  
pp. 561-584
Author(s):  
ERMEK S. NURKHAIDAROV ◽  
JAMES H. SCHMERL

AbstractLet κ be the cardinality of some saturated model of Peano Arithmetic. There is a set of ${2^{{\aleph _0}}}$ saturated models of PA, each having cardinality κ, such that whenever M and N are two distinct models from this set, then Aut(${\cal M}$) ≇ Aut ($${\cal N}$$).



2015 ◽  
Vol 80 (4) ◽  
pp. 1411-1434
Author(s):  
JAMES H. SCHMERL

AbstractIf ${\cal M},{\cal N}$ are countable, arithmetically saturated models of Peano Arithmetic and ${\rm{Aut}}\left( {\cal M} \right) \cong {\rm{Aut}}\left( {\cal N} \right)$, then the Turing-jumps of ${\rm{Th}}\left( {\cal M} \right)$ and ${\rm{Th}}\left( {\cal N} \right)$ are recursively equivalent.



Author(s):  
A. M. W. Glass ◽  
Yuri Gurevich ◽  
W. Charles Holland ◽  
Saharon Shelah

Classifying (unordered) sets by the elementary (first order) properties of their automorphism groups was undertaken in (7), (9) and (11). For example, if Ω is a set whose automorphism group, S(Ω), satisfiesthen Ω has cardinality at most ℵ0 and conversely (see (7)). We are interested in classifying homogeneous totally ordered sets (homogeneous chains, for short) by the elementary properties of their automorphism groups. (Note that we use ‘homogeneous’ here to mean that the automorphism group is transitive.) This study was begun in (4) and (5). For any set Ω, S(Ω) is primitive (i.e. has no congruences). However, the automorphism group of a homogeneous chain need not be o-primitive (i.e. it may have convex congruences). Fortunately, ‘o-primitive’ is a property that can be captured by a first order sentence for automorphisms of homogeneous chains. Hence our general problem falls naturally into two parts. The first is to classify (first order) the homogeneous chains whose automorphism groups are o-primitive; the second is to determine how the o-primitive components are related for arbitrary homogeneous chains whose automorphism groups are elementarily equivalent.



2002 ◽  
Vol 67 (3) ◽  
pp. 897-909
Author(s):  
David M. Evans ◽  
M. E. Pantano

Various results have been proved about growth rates of certain sequences of integers associated with infinite permutation groups. Most of these concern the number of orbits of the automorphism group of an ℵ0-categorical structure on the set of unordered n-subsets or on the set of n-tuples of elements of . (Recall that by the Ryll-Nardzewski Theorem, if is countable and ℵ0-categorical, the number of the orbits of its automorphism group Aut() on the set of n-tuples from is finite and equals the number of complete n-types consistent with the theory of .) The book [Ca90] is a convenient reference for these results. One of the oldest (in the realms of ‘folklore’) is that for any sequence (Kn)n∈ℕ of natural numbers there is a countable ℵ0-categorical structure such that the number of orbits of Aut() on the set of n-tuples from is greater than kn for all n.These investigations suggested the study of the growth rate of another sequence. Let be an ℵ0-categorical structure and X be a finite subset of . Let acl(X) be the algebraic closure of X, that is, the union of the finite X-definable subsets of . Equivalently, this is the union of the finite orbits on of Aut()(X), the pointwise stabiliser of X in Aut(). Define



2002 ◽  
Vol 67 (4) ◽  
pp. 1249-1264 ◽  
Author(s):  
James H. Schmerl

Which groups are isomorphic to automorphism groups of models of Peano Arithmetic? It will be shown here that any group that has half a chance of being isomorphic to the automorphism group of some model of Peano Arithmetic actually is.For any structure , let Aut() be its automorphism group. There are groups which are not isomorphic to any model = (N, +, ·, 0, 1, ≤) of PA. For example, it is clear that Aut(N), being a subgroup of Aut((, <)), must be torsion-free. However, as will be proved in this paper, if (A, <) is a linearly ordered set and G is a subgroup of Aut((A, <)), then there are models of PA such that Aut() ≅ G.If is a structure, then its automorphism group can be considered as a topological group by letting the stabilizers of finite subsets of A be the basic open subgroups. If ′ is an expansion of , then Aut(′) is a closed subgroup of Aut(). Conversely, for any closed subgroup G ≤ Aut() there is an expansion ′ of such that Aut(′) = G. Thus, if is a model of PA, then Aut() is not only a subgroup of Aut((N, <)), but it is even a closed subgroup of Aut((N, ′)).There is a characterization, due to Cohn [2] and to Conrad [3], of those groups G which are isomorphic to closed subgroups of automorphism groups of linearly ordered sets.





2019 ◽  
Vol 85 (1) ◽  
pp. 199-223 ◽  
Author(s):  
DAOUD SINIORA ◽  
SŁAWOMIR SOLECKI

AbstractWe give strengthened versions of the Herwig–Lascar and Hodkinson–Otto extension theorems for partial automorphisms of finite structures. Such strengthenings yield several combinatorial and group-theoretic consequences for homogeneous structures. For instance, we establish a coherent form of the extension property for partial automorphisms for certain Fraïssé classes. We deduce from these results that the isometry group of the rational Urysohn space, the automorphism group of the Fraïssé limit of any Fraïssé class that is the class of all ${\cal F}$-free structures (in the Herwig–Lascar sense), and the automorphism group of any free homogeneous structure over a finite relational language all contain a dense locally finite subgroup. We also show that any free homogeneous structure admits ample generics.



2015 ◽  
Vol 14 (09) ◽  
pp. 1540008
Author(s):  
S. B. Mulay

We establish some results about orbit closures of permutation groups and their relationship to the automorphism groups of power-set graphs with colorings. One of our theorems proves that an arbitrary group can be realized as the automorphism group of a colored power-set graph.



2002 ◽  
Vol 67 (4) ◽  
pp. 1265-1273
Author(s):  
James H. Schmerl

Some highly saturated models of Peano Arithmetic are constructed in this paper, which consists of two independent sections. In § 1 we answer a question raised in [10] by constructing some highly saturated, rather classless models of PA. A question raised in [7], [3], ]4] is answered in §2, where highly saturated, nonstandard universes having no bad cuts are constructed.Highly saturated, rather classless models of Peano Arithmetic were constructed in [10]. The main result proved there is the following theorem. If λ is a regular cardinal and is a λ-saturated model of PA such that ∣M∣ > λ, then has an elementary extension of the same cardinality which is also λ-saturated and which, in addition, is rather classless. The construction in [10] produced a model for which cf() = λ+. We asked in Question 5.1 of [10] what other cofinalities could such a model have. This question is answered here in Theorem 1.1 of §1 by showing that any cofinality not immediately excluded is possible. Its proof does not depend on the theorem from [10]; in fact, the proof presented here gives a proof of that theorem which is much simpler and shorter than the one in [10].Recursively saturated, rather classless κ-like models of PA were constructed in [9]. In the case of singular κ such models were constructed whenever cf(κ) > ℵ0; no additional set-theoretic hypothesis was needed.



1980 ◽  
Vol 32 (2) ◽  
pp. 414-420 ◽  
Author(s):  
A. M. Brunner

In this paper, we consider the class of groups G(l, m; k) which are defined by the presentationwhere k, l, m are integers, and |l| > m > 0, k > 0. Groups in this class possess many properties which seem unusual, especially for one-relator groups. The basis for the results obtained below is the determination of endomorphisms.For certain of the groups, we are able to calculate their automorphism groups. One consequence of this is to produce examples of one-relator groups with infinitely generated automorphism groups. This answers a question raised by G. Baumslag (in a colloquium lecture at the University of Waterloo). Our examples are, perhaps, the simplest possible; J. Lewin [10] has found an example of a finitely presented group with an infinitely generated automorphism group.



Sign in / Sign up

Export Citation Format

Share Document