An ordinal partition avoiding pentagrams

2000 ◽  
Vol 65 (3) ◽  
pp. 969-978 ◽  
Author(s):  
Jean A. Larson

AbstractSuppose that α = γ + δ where γ ≥ δ > 0. Then there is a graph which has no independent set of order type and has no pentagram (a pentagram is a set of five points with all pairs joined by edges). In the notation of Erdős and Rado. who generalized Ramsey's Theorem to this setting.


2016 ◽  
Vol 81 (4) ◽  
pp. 1531-1554 ◽  
Author(s):  
WEI WANG

AbstractWe introduce the definability strength of combinatorial principles. In terms of definability strength, a combinatorial principle is strong if solving a corresponding combinatorial problem could help in simplifying the definition of a definable set. We prove that some consequences of Ramsey’s Theorem for colorings of pairs could help in simplifying the definitions of some ${\rm{\Delta }}_2^0$ sets, while some others could not. We also investigate some consequences of Ramsey’s Theorem for colorings of longer tuples. These results of definability strength have some interesting consequences in reverse mathematics, including strengthening of known theorems in a more uniform way and also new theorems.



2016 ◽  
Vol 81 (4) ◽  
pp. 1405-1431 ◽  
Author(s):  
DAMIR D. DZHAFAROV

AbstractThis paper is a contribution to the growing investigation of strong reducibilities between ${\rm{\Pi }}_2^1$ statements of second-order arithmetic, viewed as an extension of the traditional analysis of reverse mathematics. We answer several questions of Hirschfeldt and Jockusch [13] about Weihrauch (uniform) and strong computable reductions between various combinatorial principles related to Ramsey’s theorem for pairs. Among other results, we establish that the principle $SRT_2^2$ is not Weihrauch or strongly computably reducible to $D_{ < \infty }^2$, and that COH is not Weihrauch reducible to $SRT_{ < \infty }^2$, or strongly computably reducible to $SRT_2^2$. The last result also extends a prior result of Dzhafarov [9]. We introduce a number of new techniques for controlling the combinatorial and computability-theoretic properties of the problems and solutions we construct in our arguments.



1973 ◽  
Vol 38 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Fred Galvin ◽  
Karel Prikry

Definition 1. For a set S and a cardinal κ,In particular, 2ω denotes the power set of the natural numbers and not the cardinal 2ℵ0. We regard 2ω as a topological space with the usual product topology.Definition 2. A set S ⊆ 2ω is Ramsey if there is an M ∈ [ω]ω such that either [M]ω ⊆ S or else [M]ω ⊆ 2ω − S.Erdös and Rado [3, Example 1, p. 434] showed that not every S ⊆ 2ω is Ramsey. In view of the nonconstructive character of the counterexample, one might expect (as Dana Scott has suggested) that all sufficiently definable sets are Ramsey. In fact, our main result (Theorem 2) is that all Borei sets are Ramsey. Soare [10] has applied this result to some problems in recursion theory.The first positive result on Scott's problem was Ramsey's theorem [8, Theorem A]. The next advance was Nash-Williams' generalization of Ramsey's theorem (Corollary 2), which can be interpreted as saying: If S1 and S2 are disjoint open subsets of 2ω, there is an M ∈ [ω]ω such that either [M]ω ⋂ S1 = ∅ or [M]ω ∩ S2 = ⊆. (This is halfway between “clopen sets are Ramsey” and “open sets are Ramsey.”) Then Galvin [4] stated a generalization of Nash-Williams' theorem (Corollary 1) which says, in effect, that open sets are Ramsey; this was discovered independently by Andrzej Ehrenfeucht, Paul Cohen, and probably many others, but no proof has been published.



2014 ◽  
Vol 79 (01) ◽  
pp. 89-102 ◽  
Author(s):  
LORENZO CARLUCCI ◽  
KONRAD ZDANOWSKI

Abstract We characterize the effective content and the proof-theoretic strength of a Ramsey-type theorem for bi-colorings of so-called exactly large sets. An exactly large set is a set $X \subset {\bf{N}}$ such that ${\rm{card}}\left( X \right) = {\rm{min}}\left( X \right) + 1$ . The theorem we analyze is as follows. For every infinite subset M of N, for every coloring C of the exactly large subsets of M in two colors, there exists and infinite subset L of M such that C is constant on all exactly large subsets of L. This theorem is essentially due to Pudlák and Rödl and independently to Farmaki. We prove that—over RCA0 —this theorem is equivalent to closure under the ωth Turing jump (i.e., under arithmetical truth). Natural combinatorial theorems at this level of complexity are rare. In terms of Reverse Mathematics we give the first Ramsey-theoretic characterization of ${\rm{ACA}}_0^ +$ . Our results give a complete characterization of the theorem from the point of view of Computability Theory and of the Proof Theory of Arithmetic. This nicely extends the current knowledge about the strength of Ramsey’s Theorem. We also show that analogous results hold for a related principle based on the Regressive Ramsey’s Theorem. We conjecture that analogous results hold for larger ordinals.



2017 ◽  
Vol 82 (4) ◽  
pp. 1278-1316 ◽  
Author(s):  
VASCO BRATTKA ◽  
TAHINA RAKOTONIAINA

AbstractWe study the uniform computational content of Ramsey’s theorem in the Weihrauch lattice. Our central results provide information on how Ramsey’s theorem behaves under product, parallelization, and jumps. From these results we can derive a number of important properties of Ramsey’s theorem. For one, the parallelization of Ramsey’s theorem for cardinalityn≥ 1 and an arbitrary finite number of colorsk≥ 2 is equivalent to then-th jump of weak Kőnig’s lemma. In particular, Ramsey’s theorem for cardinalityn≥ 1 is${\bf{\Sigma }}_{n + 2}^0$-measurable in the effective Borel hierarchy, but not${\bf{\Sigma }}_{n + 1}^0$-measurable. Secondly, we obtain interesting lower bounds, for instance then-th jump of weak Kőnig’s lemma is Weihrauch reducible to (the stable version of) Ramsey’s theorem of cardinalityn+ 2 forn≥ 2. We prove that with strictly increasing numbers of colors Ramsey’s theorem forms a strictly increasing chain in the Weihrauch lattice. Our study of jumps also shows that certain uniform variants of Ramsey’s theorem that are indistinguishable from a nonuniform perspective play an important role. For instance, the colored version of Ramsey’s theorem explicitly includes the color of the homogeneous set as output information, and the jump of this problem (but not the uncolored variant) is equivalent to the stable version of Ramsey’s theorem of the next greater cardinality. Finally, we briefly discuss the particular case of Ramsey’s theorem for pairs, and we provide some new separation techniques for problems that involve jumps in this context. In particular, we study uniform results regarding the relation of boundedness and induction problems to Ramsey’s theorem, and we show that there are some significant differences with the nonuniform situation in reverse mathematics.



2016 ◽  
Vol 81 (4) ◽  
pp. 1481-1499 ◽  
Author(s):  
LUDOVIC PATEY

AbstractNo natural principle is currently known to be strictly between the arithmetic comprehension axiom (ACA0) and Ramsey’s theorem for pairs ($RT_2^2$) in reverse mathematics. The tree theorem for pairs ($TT_2^2$) is however a good candidate. The tree theorem states that for every finite coloring over tuples of comparable nodes in the full binary tree, there is a monochromatic subtree isomorphic to the full tree. The principle $TT_2^2$ is known to lie between ACA0 and $RT_2^2$ over RCA0, but its exact strength remains open. In this paper, we prove that $RT_2^2$ together with weak König’s lemma (WKL0) does not imply $TT_2^2$, thereby answering a question of Montálban. This separation is a case in point of the method of Lerman, Solomon and Towsner for designing a computability-theoretic property which discriminates between two statements in reverse mathematics. We therefore put the emphasis on the different steps leading to this separation in order to serve as a tutorial for separating principles in reverse mathematics.



2017 ◽  
Vol 82 (2) ◽  
pp. 737-753
Author(s):  
STEFANO BERARDI ◽  
SILVIA STEILA

AbstractThe purpose is to study the strength of Ramsey’s Theorem for pairs restricted to recursive assignments ofk-many colors, with respect to Intuitionistic Heyting Arithmetic. We prove that for every natural number$k \ge 2$, Ramsey’s Theorem for pairs and recursive assignments ofkcolors is equivalent to the Limited Lesser Principle of Omniscience for${\rm{\Sigma }}_3^0$formulas over Heyting Arithmetic. Alternatively, the same theorem over intuitionistic arithmetic is equivalent to: for every recursively enumerable infinitek-ary tree there is some$i < k$and some branch with infinitely many children of indexi.



2018 ◽  
Vol 83 (04) ◽  
pp. 1610-1617
Author(s):  
THEODORE A. SLAMAN ◽  
KEITA YOKOYAMA

AbstractIn this article, we will show that ${\rm{R}}{{\rm{T}}^2} + WK{L_0}$ is a ${\rm{\Pi }}_1^1$-conservative extension of ${\rm{B\Sigma }}_3^0$.



2016 ◽  
Vol 81 (1) ◽  
pp. 384-394 ◽  
Author(s):  
ELEFTHERIOS TACHTSIS

AbstractRamsey’s Theorem is naturally connected to the statement “every infinite partially ordered set has either an infinite chain or an infinite anti-chain”. Indeed, it is a well-known result that Ramsey’s Theorem implies the latter principle.In the book “Consequences of the Axiom of Choice” by P. Howard and J. E. Rubin, it is stated as unknown whether the above implication is reversible, that is whether the principle “every infinite partially ordered set has either an infinite chain or an infinite anti-chain” implies Ramsey’s Theorem. The purpose of this paper is to settle the aforementioned open problem. In particular, we construct a suitable Fraenkel–Mostowski permutation model ${\cal N}$ for ZFA and prove that the above principle for infinite partially ordered sets is true in ${\cal N}$, whereas Ramsey’s Theorem is false in ${\cal N}$. Then, based on the existence of ${\cal N}$ and on results of D. Pincus, we show that there is a model of ZF which satisfies “every infinite partially ordered set has either an infinite chain or an infinite anti-chain” and the negation of Ramsey’s Theorem.In addition, we prove that Ramsey’s Theorem (hence, the above principle for infinite partially ordered sets) is true in Mostowski’s linearly ordered model, filling the gap of information in the book “Consequences of the Axiom of Choice”.



Sign in / Sign up

Export Citation Format

Share Document