Some remarks on definable equivalence relations in O-minimal structures

1986 ◽  
Vol 51 (3) ◽  
pp. 709-714 ◽  
Author(s):  
Anand Pillay

Let M be an O-minimal structure. We use our understanding, acquired in [KPS], of the structure of definable sets of n-tuples in M, to study definable (in M) equivalence relations on Mn. In particular, we show that if E is an A-definable equivalence relation on Mn (A ⊂ M) then E has only finitely many classes with nonempty interior in Mn, each such class being moreover also A-definable. As a consequence, we are able to give some conditions under which an O-minimal theory T eliminates imaginaries (in the sense of Poizat [P]).If L is a first order language and M an L-structure, then by a definable set in M, we mean something of the form X ⊂ Mn, n ≥ 1, where X = {(a1…,an) ∈ Mn: M ⊨ϕ(ā)} for some formula ∈ L(M). (Here L(M) means L together with names for the elements of M.) If the parameters from come from a subset A of M, we say that X is A-definable.M is said to be O-minimal if M = (M, <,…), where < is a dense linear order with no first or last element, and every definable set X ⊂ M is a finite union of points, and intervals (a, b) (where a, b ∈ M ∪ {± ∞}). (This notion is as in [PS] except here we demand the underlying order be dense.) The complete theory T is said to be O-minimal if every model of T is O-minimal. (Note that in [KPS] it is proved that if M is O-minimal, then T = Th(M) is O-minimal.) In the remainder of this section and in §2, M will denote a fixed but arbitrary O-minimal structure. A,B,C,… will denote subsets of M.

1991 ◽  
Vol 56 (2) ◽  
pp. 608-617 ◽  
Author(s):  
Michał Krynicki ◽  
Hans-Peter Tuschik

We consider the language L(Q), where L is a countable first-order language and Q is an additional generalized quantifier. A weak model for L(Q) is a pair 〈, q〉 where is a first-order structure for L and q is a family of subsets of its universe. In case that q is the set of classes of some equivalence relation the weak model 〈, q〉 is called a partition model. The interpretation of Q in partition models was studied by Szczerba [3], who was inspired by Pawlak's paper [2]. The corresponding set of tautologies in L(Q) is called rough logic. In the following we will give a set of axioms of rough logic and prove its completeness. Rough logic is designed for creating partition models.The partition models are the weak models arising from equivalence relations. For the basic properties of the logic of weak models the reader is referred to Keisler's paper [1]. In a weak model 〈, q〉 the formulas of L(Q) are interpreted as usual with the additional clause for the quantifier Q: 〈, q〉 ⊨ Qx φ(x) iff there is some X ∊ q such that 〈, q〉 ⊨ φ(a) for all a ∊ X.In case X satisfies the right side of the above equivalence we say that X is contained in φ(x) or, equivalently, φ(x) contains X.


1986 ◽  
Vol 51 (1) ◽  
pp. 63-74 ◽  
Author(s):  
David Marker

Let L be a first order language containing a binary relation symbol <.Definition. Suppose ℳ is an L-structure and < is a total ordering of the domain of ℳ. ℳ is ordered minimal (-minimal) if and only if any parametrically definable X ⊆ ℳ can be represented as a finite union of points and intervals with endpoints in ℳ.In any ordered structure every finite union of points and intervals is definable. Thus the -minimal structures are the ones with no unnecessary definable sets. If T is a complete L-theory we say that T is strongly (-minimal if and only if every model of T is -minimal.The theory of real closed fields is the canonical example of a strongly -minimal theory. Strongly -minimal theories were introduced (in a less general guise which we discuss in §6) by van den Dries in [1]. Extending van den Dries' work, Pillay and Steinhorn (see [3], [4] and [2]) developed an extensive structure theory for definable sets in strongly -minimal theories, generalizing the results for real closed fields. They also established several striking analogies between strongly -minimal theories and ω-stable theories (most notably the existence and uniqueness of prime models). In this paper we will examine the construction of models of strongly -minimal theories emphasizing the problems involved in realizing and omitting types. Among other things we will prove that the Hanf number for omitting types for a strongly -minimal theory T is at most (2∣T∣)+, and characterize the strongly -minimal theories with models order isomorphic to (R, <).


1986 ◽  
Vol 51 (2) ◽  
pp. 374-376 ◽  
Author(s):  
Simon Thomas

If L is a first order language and n is a natural number, then Ln is the set of formulas which only make use of the variables x1,…,xn. While every finite structure is determined up to isomorphism by its theory in L, the same is no longer true in Ln. This simple observation is the source of a number of intriguing questions. For example, Poizat [2] has asked whether a complete theory in Ln which has at least two nonisomorphic finite models must necessarily also have an infinite one. The purpose of this paper is to present some counterexamples to this conjecture.Theorem. For each n ≤ 3 there are complete theories in L2n−2andL2n−1having exactly n + 1 models.In our notation and definitions, we follow Poizat [2]. To test structures for elementary equivalence in Ln, we shall use the modified Ehrenfeucht-Fraïssé games of Immerman [1]. For convenience, we repeat his definition here.Suppose that L is a purely relational language, each of the relations having arity at most n. Let and ℬ be two structures for L. Define the Ln game on and ℬ as follows. There are two players, I and II, and there are n pairs of counters a1, b1, …, an, bn. On each move, player I picks up any of the counters and places it on an element of the appropriate structure.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


1980 ◽  
Vol 23 (1) ◽  
pp. 95-98
Author(s):  
Alan Adamson

Let L be a countable first-order language and T a fixed complete theory in L. If is a model of T, is an n-sequence of variables, and ā=〈a1,…, an〉 is an n-sequence of elements of M, the universe of , we let where ranges over formulas of L containing freely at most the variables υ1,…υn. ā is said to realize in We let be where is the sequence of the first n variables of L.


2004 ◽  
Vol 69 (1) ◽  
pp. 201-214
Author(s):  
Jan Krajíček

AbstractWe define the notion of approximate Euler characteristic of definable sets of a first order structure. We show that a structure admits a non-trivial approximate Euler characteristic if it satisfies weak pigeonhole principle : two disjoint copies of a non-empty definable set A cannot be definably embedded into A, and principle CC of comparing cardinalities: for any two definable sets A, B either A definably embeds in B or vice versa. Also, a structure admitting a non-trivial approximate Euler characteristic must satisfy .Further we show that a structure admits a non-trivial dimension function on definable sets if and only if it satisfies weak pigeonhole principle : for no definable set A with more than one element can A2 definably embed into A.


1983 ◽  
Vol 48 (1) ◽  
pp. 53-59
Author(s):  
G.C. Nelson

We start with the framework upon which this paper is based. The most useful reference for these notions is [2]. For any nonempty index set I and any proper filter D on S(I) (the power set of I), we denote by I/D the reduced power of modulo D as defined in [2, pp. 167–169]. The first-order language associated with I/D will always be the same language as associated with . We denote the 2-element Boolean algebra 〈{0, 1}, ⋂, ⋃, c, 0, 1〉 by 2 and 2I/D denotes the reduced power of it modulo D. We point out the intimate connection between the structures I/D and 2I/D given in [2, pp. 341–345]. Moreover, we assume as known the definition of Horn formula and Horn sentence as given in [2, p. 328] along with the fundamental theorem that φ is a reduced product sentence iff φ is provably equivalent to a Horn sentence [2, Theorem 6.2.5/ (iff φ is a 2-direct product sentence and a reduced power sentence [2, Proposition 6.2.6(ii)]). For a theory T(any set of sentences), ⊨ T denotes that is a model of T.In addition to the above we assume as known the elementary characteristics (due to Tarski) associated with a complete theory of a Boolean algebra, and we adopt the notation 〈n, p, q〉 of [3], [10], or [6] to denote such an elementary characteristic or the corresponding complete theory. We frequently will use Ershov's theorem which asserts that for each 〈n, p, q〉 there exist an index set I and filter D such that 2I/D ⊨ 〈n, p, q〉 [3] or [2, Lemma 6.3.21].


Erkenntnis ◽  
2021 ◽  
Author(s):  
Kai F. Wehmeier

AbstractI examine notions of equivalence between logics (understood as languages interpreted model-theoretically) and develop two new ones that invoke not only the algebraic but also the string-theoretic structure of the underlying language. As an application, I show how to construe modal operator languages as what might be called typographical notational variants of bona fide first-order languages.


2003 ◽  
Vol 68 (1) ◽  
pp. 35-51 ◽  
Author(s):  
Roman Wencel

AbstractLet (M, ≤,…) denote a Boolean ordered o-minimal structure. We prove that a Boolean subalgebra of M determined by an algebraically closed subset contains no dense atoms. We show that Boolean algebras with finitely many atoms do not admit proper expansions with o-minimal theory. The proof involves decomposition of any definable set into finitely many pairwise disjoint cells, i.e., definable sets of an especially simple nature. This leads to the conclusion that Boolean ordered structures with o-minimal theories are essentially bidefinable with Boolean algebras with finitely many atoms, expanded by naming constants. We also discuss the problem of existence of proper o-minimal expansions of Boolean algebras.


2001 ◽  
Vol 66 (3) ◽  
pp. 1382-1414 ◽  
Author(s):  
Bektur Sembiuly Baizhanov

AbstractA subset A ⊆ M of a totally ordered structure M is said to be convex, if for any a, b ∈ A: [a < b → ∀t (a < tb → t ∈ A)]. A complete theory of first order is weakly o-minimal (M. Dickmann [D]) if any model M is totally ordered by some ∅-definable formula and any subset of M which is definable with parameters from M is a finite union of convex sets. We prove here that for any model M of a weakly o-minimal theory T. any expansion M+ of M by a family of unary predicates has a weakly o-minimal theory iff the set of all realizations of each predicate is a union of a finite number of convex sets (Theorem 63). that solves the Problem of Cherlin-Macpherson-Marker-Steinhorn [MMS] for the class of weakly o-minimal theories.


Sign in / Sign up

Export Citation Format

Share Document