Omitting types in -minimal theories

1986 ◽  
Vol 51 (1) ◽  
pp. 63-74 ◽  
Author(s):  
David Marker

Let L be a first order language containing a binary relation symbol <.Definition. Suppose ℳ is an L-structure and < is a total ordering of the domain of ℳ. ℳ is ordered minimal (-minimal) if and only if any parametrically definable X ⊆ ℳ can be represented as a finite union of points and intervals with endpoints in ℳ.In any ordered structure every finite union of points and intervals is definable. Thus the -minimal structures are the ones with no unnecessary definable sets. If T is a complete L-theory we say that T is strongly (-minimal if and only if every model of T is -minimal.The theory of real closed fields is the canonical example of a strongly -minimal theory. Strongly -minimal theories were introduced (in a less general guise which we discuss in §6) by van den Dries in [1]. Extending van den Dries' work, Pillay and Steinhorn (see [3], [4] and [2]) developed an extensive structure theory for definable sets in strongly -minimal theories, generalizing the results for real closed fields. They also established several striking analogies between strongly -minimal theories and ω-stable theories (most notably the existence and uniqueness of prime models). In this paper we will examine the construction of models of strongly -minimal theories emphasizing the problems involved in realizing and omitting types. Among other things we will prove that the Hanf number for omitting types for a strongly -minimal theory T is at most (2∣T∣)+, and characterize the strongly -minimal theories with models order isomorphic to (R, <).

1976 ◽  
Vol 41 (3) ◽  
pp. 605-610 ◽  
Author(s):  
Angus MacIntyre

The brilliant work of Ax-Kochen [1], [2], [3] and Ersov [6], and later work by Kochen [7] have made clear very striking resemblances between real closed fields and p-adically closed fields, from the model-theoretical point of view. Cohen [5], from a standpoint less model-theoretic, also contributed much to this analogy.In this paper we shall point out a feature of all the above treatments which obscures one important resemblance between real and p-adic fields. We shall outline a new treatment of the p-adic case (not far removed from the classical treatments cited above), and establish an new analogy between real closed and p-adically closed fields.We want to describe the definable subsets of p-adically closed fields. Tarski [9] in his pioneering work described the first-order definable subsets of real closed fields. Namely, if K is a real-closed field and X is a subset of K first-order definable on K using parameters from K then X is a finite union of nonoverlapping intervals (open, closed, half-open, empty or all of K). In particular, if X is infinite, X has nonempty interior.Now, there is an analogous question for p-adically closed fields. If K is p-adically closed, what are the definable subsets of K? To the best of our knowledge, this question has not been answered until now.What is the difference between the two cases? Tarski's analysis rests on elimination of quantifiers for real closed fields. Elimination of quantifiers for p-adically closed fields has been achieved [3], but only when we take a cross-section π as part of our basic data. The problem is that in the presence of π it becomes very difficult to figure out what sort of set is definable by a quantifier free formula. We shall see later that use of the cross-section increases the class of definable sets.


1975 ◽  
Vol 40 (3) ◽  
pp. 317-320 ◽  
Author(s):  
Julia F. Knight

In [4] it is shown that if the structure omits a type Σ, and Σ is complete with respect to Th(), then there is a proper elementary extension of which omits Σ. This result is extended in the present paper. It is shown that Th() has models omitting Σ in all infinite powers.A type is a countable set of formulas with just the variable ν occurring free. A structure is said to omit the type Σ if no element of satisfies all of the formulas of Σ. A type Σ, in the same language as a theory T, is said to be complete with respect to T if (1) T ∪ Σ is consistent, and (2) for every formula φ(ν) of the language of T (with just ν free), either φ or ¬φ is in Σ.The proof of the result of this paper resembles Morley's proof [5] that the Hanf number for omitting types is . It is shown that there is a model of Th() which omits Σ and contains an infinite set of indiscernibles. Where Morley used the Erdös-Rado generalization of Ramsey's theorem, a definable version of the ordinary Ramsey's theorem is used here.The “omitting types” version of the ω-completeness theorem ([1], [3], [6]) is used, as it was in Morley's proof and in [4]. In [4], satisfaction of the hypotheses of the ω-completeness theorem followed from the fact that, in , any infinite, definable set can be split into two infinite, definable sets.


Author(s):  
Rosario Mennuni

We study the monoid of global invariant types modulo domination-equivalence in the context of o-minimal theories. We reduce its computation to the problem of proving that it is generated by classes of [Formula: see text]-types. We show this to hold in Real Closed Fields, where generators of this monoid correspond to invariant convex subrings of the monster model. Combined with [C. Ealy, D. Haskell and J. Maríková, Residue field domination in real closed valued fields, Notre Dame J. Formal Logic 60(3) (2019) 333–351], this allows us to compute the domination monoid in the weakly o-minimal theory of Real Closed Valued Fields.


1994 ◽  
Vol 59 (1) ◽  
pp. 185-198 ◽  
Author(s):  
David Marker ◽  
Charles I. Steinhorn

Let L be a first order language. If M is an L-structure, let LM be the expansion of L obtained by adding constants for the elements of M.Definition. A type is definable if and only if for any L-formula , there is an LM-formula so that for all iff M ⊨ dθ(¯). The formula dθ is called the definition of θ.Definable types play a central role in stability theory and have also proven useful in the study of models of arithmetic. We also remark that it is well known and easy to see that for M ≺ N, the property that every M-type realized in N is definable is equivalent to N being a conservative extension of M, whereDefinition. If M ≺ N, we say that N is a conservative extension of M if for any n and any LN -definable S ⊂ Nn, S ∩ Mn is LM-definable in M.Van den Dries [Dl] studied definable types over real closed fields and proved the following result.0.1 (van den Dries), (i) Every type over (R, +, -,0,1) is definable.(ii) Let F and K be real closed fields and F ⊂ K. Then, the following are equivalent:(a) Every element of K that is bounded in absolute value by an element of F is infinitely close (in the sense of F) to an element of F.(b) K is a conservative extension of F.


1982 ◽  
Vol 47 (3) ◽  
pp. 669-679 ◽  
Author(s):  
Walter Baur

Let ℒ be the first order language of field theory with an additional one place predicate symbol. In [B2] it was shown that the elementary theory T of the class of all pairs of real closed fields, i.e., ℒ-structures ‹K, L›, K a real closed field, L a real closed subfield of K, is undecidable.The aim of this paper is to show that the elementary theory Ts of a nontrivial subclass of containing many naturally occurring pairs of real closed fields is decidable (Theorem 3, §5). This result was announced in [B2]. An explicit axiom system for Ts will be given later. At this point let us just mention that any model of Ts, is elementarily equivalent to a pair of power series fields ‹R0((TA)), R1((TB))› where R0 is the field of real numbers, R1 = R0 or the field of real algebraic numbers, and B ⊆ A are ordered divisible abelian groups. Conversely, all these pairs of power series fields are models of Ts.Theorem 3 together with the undecidability result in [B2] answers some of the questions asked in Macintyre [M]. The proof of Theorem 3 uses the model theoretic techniques for valued fields introduced by Ax and Kochen [A-K] and Ershov [E] (see also [C-K]). The two main ingredients are(i) the completeness of the elementary theory of real closed fields with a distinguished dense proper real closed subfield (due to Robinson [R]),(ii) the decidability of the elementary theory of pairs of ordered divisible abelian groups (proved in §§1-4).I would like to thank Angus Macintyre for fruitful discussions concerning the subject. The valuation theoretic method of classifying theories of pairs of real closed fields is taken from [M].


1997 ◽  
Vol 62 (1) ◽  
pp. 14-34 ◽  
Author(s):  
Lou van den Dries

I solve here some problems left open in “T-convexity and Tame Extensions” [9]. Familiarity with [9] is assumed, and I will freely use its notations. In particular, T will denote a complete o-minimal theory extending RCF, the theory of real closed fields. Let (, V) ⊨ Tconvex, let = V/m(V) be the residue field, with residue class map x ↦ : V ↦ , and let υ: → Γ be the associated valuation. “Definable” will mean “definable with parameters”. The main goal of this article is to determine the structure induced by (, V) on its residue fieldand on its value group Γ. In [9] we expanded the ordered field to a model of T as follows. Take a tame elementary substructure ′ of such that R′ ⊆ V and R′ maps bijectively onto under the residue class map, and make this bijection into an isomorphism ′ ≌ of T-models. (We showed such ′ exists, and that this gives an expansion of to a T-model that is independent of the choice of ′.).


1986 ◽  
Vol 51 (3) ◽  
pp. 709-714 ◽  
Author(s):  
Anand Pillay

Let M be an O-minimal structure. We use our understanding, acquired in [KPS], of the structure of definable sets of n-tuples in M, to study definable (in M) equivalence relations on Mn. In particular, we show that if E is an A-definable equivalence relation on Mn (A ⊂ M) then E has only finitely many classes with nonempty interior in Mn, each such class being moreover also A-definable. As a consequence, we are able to give some conditions under which an O-minimal theory T eliminates imaginaries (in the sense of Poizat [P]).If L is a first order language and M an L-structure, then by a definable set in M, we mean something of the form X ⊂ Mn, n ≥ 1, where X = {(a1…,an) ∈ Mn: M ⊨ϕ(ā)} for some formula ∈ L(M). (Here L(M) means L together with names for the elements of M.) If the parameters from come from a subset A of M, we say that X is A-definable.M is said to be O-minimal if M = (M, <,…), where < is a dense linear order with no first or last element, and every definable set X ⊂ M is a finite union of points, and intervals (a, b) (where a, b ∈ M ∪ {± ∞}). (This notion is as in [PS] except here we demand the underlying order be dense.) The complete theory T is said to be O-minimal if every model of T is O-minimal. (Note that in [KPS] it is proved that if M is O-minimal, then T = Th(M) is O-minimal.) In the remainder of this section and in §2, M will denote a fixed but arbitrary O-minimal structure. A,B,C,… will denote subsets of M.


1988 ◽  
Vol 53 (1) ◽  
pp. 146-159 ◽  
Author(s):  
Laura L. Mayer

The notion of o-minimality was formulated by Pillay and Steinhorn [PS] building on work of van den Dries [D]. Roughly speaking, a theory T is o-minimal if whenever M is a model of T then M is linearly ordered and every definable subset of the universe of M consists of finitely many intervals and points. The theory of real closed fields is an example of an o-minimal theory.We examine the structure of the countable models for T, T an arbitrary o-minimal theory (in a countable language). We completely characterize these models, provided that T does not have 2ω countable models. This proviso (viz. that T has fewer than 2ω countable models) is in the tradition of classification theory: given a cardinal α, if T has the maximum possible number of models of size α, i.e. 2α, then no structure theorem is expected (cf. [Sh1]).O-minimality is introduced in §1. §1 also contains conventions and definitions, including the definitions of cut and noncut. Cuts and noncuts constitute the nonisolated types over a set.In §2 we study a notion of independence for sets of nonisolated types and the corresponding notion of dimension.In §3 we define what it means for a nonisolated type to be simple. Such types generalize the so-called “components” in Pillay and Steinhorn's analysis of ω-categorical o-minimal theories [PS]. We show that if there is a nonisolated type which is not simple then T has 2ω countable models.


Sign in / Sign up

Export Citation Format

Share Document