Dual easy uniformization and model-theoretic descriptive set theory

1991 ◽  
Vol 56 (4) ◽  
pp. 1290-1316
Author(s):  
Shaughan Lavine

AbstractIt is well known that, in the terminology of Moschovakis, Descriptive set theory (1980), every adequate normed pointclass closed under ∀ω has an effective version of the generalized reduction property (GRP) called the easy uniformization property (EUP). We prove a dual result: every adequate normed pointclass closed under ∃ω has the EUP. Moschovakis was concerned with the descriptive set theory of subsets of Polish topological spaces. We set up a general framework for parts of descriptive set theory and prove results that have as special cases not only the just-mentioned topological results, but also corresponding results concerning the descriptive set theory of classes of classes of structures.Vaught (1973) asked whether the class of cPCδ classes of countable structures has the GRP. It does. A cPC(A) class is the class of all models of a sentence of the form , where ϕ is a sentence of ℒ∞ω that is in A and is a set of relation symbols that is in A. Vaught also asked whether there is any primitive recursively closed set A such that some effective version of the GRP holds for the class of cPC(A) classes of countable structures. There is: The class of cPC(A) classes of countable structures has the EUP if ω ∈ A and A is countable and primitive recursively closed. Those results and some extensions are obtained by first showing that the relevant classes of classes of structures, which Vaught showed normed, are in a suitable sense adequate and closed under ∃ω, and then applying the dual easy uniformization theorem.

1996 ◽  
Vol 2 (1) ◽  
pp. 94-107 ◽  
Author(s):  
Greg Hjorth

§0. Preface. There has been an expectation that the endgame of the more tenacious problems raised by the Los Angeles ‘cabal’ school of descriptive set theory in the 1970's should ultimately be played out with the use of inner model theory. Questions phrased in the language of descriptive set theory, where both the conclusions and the assumptions are couched in terms that only mention simply definable sets of reals, and which have proved resistant to purely descriptive set theoretic arguments, may at last find their solution through the connection between determinacy and large cardinals.Perhaps the most striking example was given by [24], where the core model theory was used to analyze the structure of HOD and then show that all regular cardinals below ΘL(ℝ) are measurable. John Steel's analysis also settled a number of structural questions regarding HODL(ℝ), such as GCH.Another illustration is provided by [21]. There an application of large cardinals and inner model theory is used to generalize the Harrington-Martin theorem that determinacy implies )determinacy.However, it is harder to find examples of theorems regarding the structure of the projective sets whose only known proof from determinacy assumptions uses the link between determinacy and large cardinals. We may equivalently ask whether there are second order statements of number theory that cannot be proved under PD–the axiom of projective determinacy–without appealing to the large cardinal consequences of the PD, such as the existence of certain kinds of inner models that contain given types of large cardinals.


2018 ◽  
Vol 29 (1) ◽  
pp. 396-428 ◽  
Author(s):  
Joan R. Moschovakis ◽  
Yiannis N. Moschovakis

1975 ◽  
Vol 90 (1) ◽  
pp. 53-75 ◽  
Author(s):  
John Burgess ◽  
Douglas Miller

Sign in / Sign up

Export Citation Format

Share Document