Types omitted in uncountable models of arithmetic

1975 ◽  
Vol 40 (3) ◽  
pp. 317-320 ◽  
Author(s):  
Julia F. Knight

In [4] it is shown that if the structure omits a type Σ, and Σ is complete with respect to Th(), then there is a proper elementary extension of which omits Σ. This result is extended in the present paper. It is shown that Th() has models omitting Σ in all infinite powers.A type is a countable set of formulas with just the variable ν occurring free. A structure is said to omit the type Σ if no element of satisfies all of the formulas of Σ. A type Σ, in the same language as a theory T, is said to be complete with respect to T if (1) T ∪ Σ is consistent, and (2) for every formula φ(ν) of the language of T (with just ν free), either φ or ¬φ is in Σ.The proof of the result of this paper resembles Morley's proof [5] that the Hanf number for omitting types is . It is shown that there is a model of Th() which omits Σ and contains an infinite set of indiscernibles. Where Morley used the Erdös-Rado generalization of Ramsey's theorem, a definable version of the ordinary Ramsey's theorem is used here.The “omitting types” version of the ω-completeness theorem ([1], [3], [6]) is used, as it was in Morley's proof and in [4]. In [4], satisfaction of the hypotheses of the ω-completeness theorem followed from the fact that, in , any infinite, definable set can be split into two infinite, definable sets.

1986 ◽  
Vol 51 (1) ◽  
pp. 63-74 ◽  
Author(s):  
David Marker

Let L be a first order language containing a binary relation symbol <.Definition. Suppose ℳ is an L-structure and < is a total ordering of the domain of ℳ. ℳ is ordered minimal (-minimal) if and only if any parametrically definable X ⊆ ℳ can be represented as a finite union of points and intervals with endpoints in ℳ.In any ordered structure every finite union of points and intervals is definable. Thus the -minimal structures are the ones with no unnecessary definable sets. If T is a complete L-theory we say that T is strongly (-minimal if and only if every model of T is -minimal.The theory of real closed fields is the canonical example of a strongly -minimal theory. Strongly -minimal theories were introduced (in a less general guise which we discuss in §6) by van den Dries in [1]. Extending van den Dries' work, Pillay and Steinhorn (see [3], [4] and [2]) developed an extensive structure theory for definable sets in strongly -minimal theories, generalizing the results for real closed fields. They also established several striking analogies between strongly -minimal theories and ω-stable theories (most notably the existence and uniqueness of prime models). In this paper we will examine the construction of models of strongly -minimal theories emphasizing the problems involved in realizing and omitting types. Among other things we will prove that the Hanf number for omitting types for a strongly -minimal theory T is at most (2∣T∣)+, and characterize the strongly -minimal theories with models order isomorphic to (R, <).


1976 ◽  
Vol 41 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Julia F. Knight

In [7] it is shown that if Σ is a type omitted in the structure = ω, +, ·, < and complete with respect to Th() then Σ is omitted in models of Th() of all infinite powers. The proof given there extends readily to other models of P. In this paper the result is extended to models of ZFC. For pre-tidy models of ZFC, the proof is a straightforward combination of the methods in [7] and in Keisler and Morley ([9], [6]). For other models, the proof involves forcing. In particular, it uses Solovay and Cohen's original forcing proof that GB is a conservative extension of ZFC (see [2, p. 105] and [5, p. 77]).The method of proof used for pre-tidy models of set theory can be used to obtain an alternate proof of the result for This new proof yields more information. First of all, a condition is obtained which resembles the hypothesis of the “Omitting Types” theorem, and which is sufficient for a theory T to have a model omitting a type Σ and containing an infinite set of indiscernibles. The proof that this condition is sufficient is essentially contained in Morley's proof [9] that the Hanf number for omitting types is so the condition will be called Morley's condition.If T is a pre-tidy theory, Morley's condition guarantees that T will have models omitting Σ in all infinite powers.


1999 ◽  
Vol 64 (2) ◽  
pp. 489-516 ◽  
Author(s):  
Tamara Hummel ◽  
Carl G. Jockusch

AbstractWe study some generalized notions of cohesiveness which arise naturally in connection with effective versions of Ramsey's Theorem. An infinite set A of natural numbers is n-cohesive (respectively, n-r-cohesive) if A is almost homogeneous for every computably enumerable (respectively, computable) 2-coloring of the n-element sets of natural numbers. (Thus the 1-cohesive and 1-r-cohesive sets coincide with the cohesive and r-cohesive sets, respectively.) We consider the degrees of unsolvability and arithmetical definability levels of n-cohesive and n-r-cohesive sets. For example, we show that for all n ≥ 2, there exists a n-cohesive set. We improve this result for n = 2 by showing that there is a 2-cohesive set. We show that the n-cohesive and n-r-cohesive degrees together form a linear, non-collapsing hierarchy of degrees for n ≥ 2. In addition, for n ≥ 2 we characterize the jumps of n-cohesive degrees as exactly the degrees ≥ 0(n+1) and also characterize the jumps of the n-r-cohesive degrees.


2016 ◽  
Vol 81 (4) ◽  
pp. 1531-1554 ◽  
Author(s):  
WEI WANG

AbstractWe introduce the definability strength of combinatorial principles. In terms of definability strength, a combinatorial principle is strong if solving a corresponding combinatorial problem could help in simplifying the definition of a definable set. We prove that some consequences of Ramsey’s Theorem for colorings of pairs could help in simplifying the definitions of some ${\rm{\Delta }}_2^0$ sets, while some others could not. We also investigate some consequences of Ramsey’s Theorem for colorings of longer tuples. These results of definability strength have some interesting consequences in reverse mathematics, including strengthening of known theorems in a more uniform way and also new theorems.


1973 ◽  
Vol 38 (2) ◽  
pp. 193-198 ◽  
Author(s):  
Fred Galvin ◽  
Karel Prikry

Definition 1. For a set S and a cardinal κ,In particular, 2ω denotes the power set of the natural numbers and not the cardinal 2ℵ0. We regard 2ω as a topological space with the usual product topology.Definition 2. A set S ⊆ 2ω is Ramsey if there is an M ∈ [ω]ω such that either [M]ω ⊆ S or else [M]ω ⊆ 2ω − S.Erdös and Rado [3, Example 1, p. 434] showed that not every S ⊆ 2ω is Ramsey. In view of the nonconstructive character of the counterexample, one might expect (as Dana Scott has suggested) that all sufficiently definable sets are Ramsey. In fact, our main result (Theorem 2) is that all Borei sets are Ramsey. Soare [10] has applied this result to some problems in recursion theory.The first positive result on Scott's problem was Ramsey's theorem [8, Theorem A]. The next advance was Nash-Williams' generalization of Ramsey's theorem (Corollary 2), which can be interpreted as saying: If S1 and S2 are disjoint open subsets of 2ω, there is an M ∈ [ω]ω such that either [M]ω ⋂ S1 = ∅ or [M]ω ∩ S2 = ⊆. (This is halfway between “clopen sets are Ramsey” and “open sets are Ramsey.”) Then Galvin [4] stated a generalization of Nash-Williams' theorem (Corollary 1) which says, in effect, that open sets are Ramsey; this was discovered independently by Andrzej Ehrenfeucht, Paul Cohen, and probably many others, but no proof has been published.


1977 ◽  
Vol 42 (3) ◽  
pp. 387-390 ◽  
Author(s):  
Andreas Blass

Ramsey's theorem [5] asserts that every infinite set X has the following partition property (RP): For every partition of the set [X]2 of two-element subsets of X into two pieces, there is an infinite subset Y of X such that [Y]2 is included in one of the pieces. Ramsey explicitly indicated that his proof of this theorem used the axiom of choice. Kleinberg [3] showed that every proof of Ramsey's theorem must use the axiom of choice, although rather weak forms of this axiom suffice. J. Dawson has raised the question of the position of Ramsey's theorem in the hierarchy of weak axioms of choice.In this paper, we prove or refute the provability of each of the possible implications between Ramsey's theorem and the weak axioms of choice mentioned in Appendix A.3 of Jech's book [2]. Our results, along with some known facts which we include for completeness, may be summarized as follows (the notation being as in [2]):A. The following principles do not (even jointly) imply Ramsey's theorem, nor does Ramsey's theorem imply any of them:the Boolean prime ideal theorem,the selection principle,the order extension principle,the ordering principle,choice from wellordered sets (ACW),choice from finite sets,choice from pairs (C2).B. Each of the following principles implies Ramsey's theorem, but none of them follows from Ramsey's theorem:the axiom of choice,wellordered choice (∀kACk),dependent choice of any infinite length k (DCk),countable choice (ACN0),nonexistence of infinite Dedekind-finite sets (WN0).


2016 ◽  
Vol 22 (2) ◽  
pp. 151-169 ◽  
Author(s):  
LUDOVIC PATEY

AbstractRamsey’s theorem states that for any coloring of then-element subsets of ℕ with finitely many colors, there is an infinite setHsuch that alln-element subsets ofHhave the same color. The strength of consequences of Ramsey’s theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey’s theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey’s theorem.


1994 ◽  
Vol 59 (4) ◽  
pp. 1301-1325 ◽  
Author(s):  
Tamara Lakins Hummel

AbstractRamsey's Theorem states that if P is a partition of [ω]k into finitely many partition classes, then there exists an infinite set of natural numbers which is homogeneous for P. We consider the degrees of unsolvability and arithmetical definability properties of infinite homogeneous sets for recursive partitions. We give Jockusch's proof of Seetapun's recent theorem that for all recursive partitions of [ω]2 into finitely many pieces, there exists an infinite homogeneous set A such that ∅′ ≰TA. Two technical extensions of this result are given, establishing arithmetical bounds for such a set A. Applications to reverse mathematics and introreducible sets are discussed.


2001 ◽  
Vol 66 (1) ◽  
pp. 1-55 ◽  
Author(s):  
Peter A. Cholak ◽  
Carl G. Jockusch ◽  
Theodore A. Slaman

AbstractWe study the proof–theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RTkn denote Ramsey's theorem for k–colorings of n–element sets, and let RT<∞n denote (∀k)RTkn. Our main result on computability is: For any n ≥ 2 and any computable (recursive) k–coloring of the n–element sets of natural numbers, there is an infinite homogeneous set X with X″ ≤T 0(n). Let IΣn and BΣn denote the Σn induction and bounding schemes, respectively. Adapting the case n = 2 of the above result (where X is low2) to models of arithmetic enables us to show that RCA0 + IΣ2 + RT22 is conservative over RCA0 + IΣ2 for Π11 statements and that RCA0 + IΣ3 + RT<∞2 is Π11-conservative over RCA0 + IΣ3. It follows that RCA0 + RT22 does not imply BΣ3. In contrast, J. Hirst showed that RCA0 + RT<∞2 does imply BΣ3, and we include a proof of a slightly strengthened version of this result. It follows that RT<∞2 is strictly stronger than RT22 over RCA0.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter provides some background material on definable sets, definable types, orthogonality to a definable set, and stable domination, especially in the valued field context. It considers more specifically these concepts in the framework of the theory ACVF of algebraically closed valued fields and describes the definable types concentrating on a stable definable V as an ind-definable set. It also proves a key result that demonstrates definable types as integrals of stably dominated types along some definable type on the value group sort. Finally, it discusses the notion of pseudo-Galois coverings. Every nonempty definable set over an algebraically closed substructure of a model of ACVF extends to a definable type.


Sign in / Sign up

Export Citation Format

Share Document