On a Sharp Inequality Concerning the Dirichlet Integral

1985 ◽  
Vol 107 (5) ◽  
pp. 1015 ◽  
Author(s):  
S.-Y. A. Chang ◽  
D. E. Marshall
1975 ◽  
Vol 56 ◽  
pp. 1-5
Author(s):  
Masaru Hara

Given a harmonic function u on a Riemann surface R, we define a period functionfor every one-dimensional cycle γ of the Riemann surface R. Γx(R) denote the totality of period functions Γu such that harmonic functions u satisfy a boundedness property X. As for X, we let B stand for boundedness, and D for the finiteness of the Dirichlet integral.


1986 ◽  
Vol 34 (3) ◽  
pp. 461-472
Author(s):  
Hong Oh Kim ◽  
Chang Ock Lee

Suppose D (υ) is the Dirichlet integral of a function υ defined on the unit disc U in the complex plane. It is well known that if υ is a harmonic function in U with D (υ) < ∞, then for each p, 0 < p < ∞, |υ|p has a harmonic majorant in U.We define the “iterated” Dirichlet integral Dn (υ) for a function υ on the polydisc Un of Cn and prove the polydisc version of the well known fact above:If υ is an n-harmonic function in Un with Dn (υ) < ∞, then for each p, 0 < p < ∞, |υ|p has an n-harmonic majorant in Un.


2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Jiaolong Chen ◽  
David Kalaj

Assume that $p\in [1,\infty ]$ and $u=P_{h}[\phi ]$, where $\phi \in L^{p}(\mathbb{S}^{n-1},\mathbb{R}^n)$ and $u(0) = 0$. Then we obtain the sharp inequality $\lvert u(x) \rvert \le G_p(\lvert x \rvert )\lVert \phi \rVert_{L^{p}}$ for some smooth function $G_p$ vanishing at $0$. Moreover, we obtain an explicit form of the sharp constant $C_p$ in the inequality $\lVert Du(0)\rVert \le C_p\lVert \phi \rVert \le C_p\lVert \phi \rVert_{L^{p}}$. These two results generalize and extend some known results from the harmonic mapping theory (D. Kalaj, Complex Anal. Oper. Theory 12 (2018), 545–554, Theorem 2.1) and the hyperbolic harmonic theory (B. Burgeth, Manuscripta Math. 77 (1992), 283–291, Theorem 1).


2005 ◽  
Vol 72 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Bang-Yen Chen

In an earlier article we obtain a sharp inequality for an arbitrary isometric immersion from a Riemannian manifold admitting a Riemannian submersion with totally geodesic fibres into a unit sphere. In this article we investigate the immersions which satisfy the equality case of the inequality. As a by-product, we discover a new characterisation of Cartan hypersurface in S4.


2018 ◽  
Vol 97 (3) ◽  
pp. 435-445 ◽  
Author(s):  
BOGUMIŁA KOWALCZYK ◽  
ADAM LECKO ◽  
YOUNG JAE SIM

We prove the sharp inequality $|H_{3,1}(f)|\leq 4/135$ for convex functions, that is, for analytic functions $f$ with $a_{n}:=f^{(n)}(0)/n!,~n\in \mathbb{N}$, such that $$\begin{eqnarray}Re\bigg\{1+\frac{zf^{\prime \prime }(z)}{f^{\prime }(z)}\bigg\}>0\quad \text{for}~z\in \mathbb{D}:=\{z\in \mathbb{C}:|z|<1\},\end{eqnarray}$$ where $H_{3,1}(f)$ is the third Hankel determinant $$\begin{eqnarray}H_{3,1}(f):=\left|\begin{array}{@{}ccc@{}}a_{1} & a_{2} & a_{3}\\ a_{2} & a_{3} & a_{4}\\ a_{3} & a_{4} & a_{5}\end{array}\right|.\end{eqnarray}$$


Sign in / Sign up

Export Citation Format

Share Document