Modelling Global Vegetation Patterns and Terrestrial Carbon Storage at the Last Glacial Maximum

1993 ◽  
Vol 3 (3) ◽  
pp. 67 ◽  
Author(s):  
I. Colin Prentice ◽  
Martin T. Sykes ◽  
Michael Lautenschlager ◽  
Sandy P. Harrison ◽  
Olga Denissenko ◽  
...  
2013 ◽  
Vol 9 (4) ◽  
pp. 1571-1587 ◽  
Author(s):  
R. O'ishi ◽  
A. Abe-Ouchi

Abstract. When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.


2002 ◽  
Vol 29 (22) ◽  
pp. 31-1-31-4 ◽  
Author(s):  
Jed O. Kaplan ◽  
I. Colin Prentice ◽  
Wolfgang Knorr ◽  
Paul J. Valdes

Nature ◽  
1990 ◽  
Vol 348 (6303) ◽  
pp. 711-714 ◽  
Author(s):  
J. M. Adams ◽  
H. Faure ◽  
L. Faure-Denard ◽  
J. M. McGlade ◽  
F. I. Woodward

Chemosphere ◽  
1996 ◽  
Vol 33 (9) ◽  
pp. 1675-1685 ◽  
Author(s):  
Michael I. Bird ◽  
Jon Llyod ◽  
Graham D. Farquhar

2012 ◽  
Vol 8 (6) ◽  
pp. 5787-5816 ◽  
Author(s):  
R. O'ishi ◽  
A. Abe-Ouchi

Abstract. When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 level (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (GCM, the MIROC-LPJ). We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows global-averaged cooling during the LGM is amplified by +13.5% due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using a separated Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 653 PgC during the LGM, which corresponds to the emission of 308 ppm atmospheric CO2. The carbon distribution during the LGM that is predicted from using an atmospheric-ocean-vegetation (AOV) GCM and using the LPJ-DGVM after an atmospheric-ocean (AO) GCM, is generally the same, but the difference is not negligible for explaining the lowering of atmospheric CO2 during the LGM.


2020 ◽  
Author(s):  
Frerk Pöppelmeier ◽  
Patrick Blaser ◽  
Marcus Gutjahr ◽  
Samuel Jaccard ◽  
Martin Frank ◽  
...  

<p>Increased carbon sequestration in the ocean subsurface is commonly assumed to have been one of the main causes responsible for lower glacial atmospheric CO<sub>2</sub> concentrations. This carbon must have been stored away from the atmosphere for thousands of years, yet the water mass structure accommodating such increased carbon storage continues to be debated. Here we present new sediment derived bottom water neodymium isotope data that allow fingerprinting of water masses and their mixtures and provide a more complete picture of the Atlantic overturning circulation geometry during the Last Glacial Maximums. These results suggest that the vertical and meridional structure of the Atlantic deep water mass distribution only experienced minor changes since the last ice age. In particular, we find no compelling evidence supporting glacial southern sourced water substantially expanding to shallower depths and farther into the northern hemisphere than today, which has been inferred from stable carbon isotope reconstructions. We argue that depleted δ<sup>13</sup>C values observed in the deep Northwest Atlantic do not necessarily indicate the presence of southern sourced water. Instead, these values may represent a northern sourced water mass with lower than modern preformed δ<sup>13</sup>C values that were further modified downstream by increased sequestration of remineralized carbon, facilitated by a more sluggish glacial deep circulation. If proven to be correct, the glacial water mass structure inferred from Nd isotopes has profound implications on our understanding of the deep ocean carbon storage during the Last Glacial Maximum.</p>


1996 ◽  
Vol 15 (8-9) ◽  
pp. 843-849 ◽  
Author(s):  
H. Faure ◽  
J.M. Adams ◽  
J.P. Debenay ◽  
L. Faure-Denard ◽  
D.R. Grants ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 1039-1062
Author(s):  
Krista M. S. Kemppinen ◽  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Andy Ridgwell ◽  
Andrew D. Friend

Abstract. During the Last Glacial Maximum (LGM), atmospheric CO2 was around 90 ppmv lower than during the pre-industrial period. The reasons for this decrease are most often elucidated through factorial experiments testing the impact of individual mechanisms. Due to uncertainty in our understanding of the real system, however, the different models used to conduct the experiments inevitably take on different parameter values and different structures. In this paper, the objective is therefore to take an uncertainty-based approach to investigating the LGM CO2 drop by simulating it with a large ensemble of parameter sets, designed to allow for a wide range of large-scale feedback response strengths. Our aim is not to definitely explain the causes of the CO2 drop but rather explore the range of possible responses. We find that the LGM CO2 decrease tends to predominantly be associated with decreasing sea surface temperatures (SSTs), increasing sea ice area, a weakening of the Atlantic Meridional Overturning Circulation (AMOC), a strengthening of the Antarctic Bottom Water (AABW) cell in the Atlantic Ocean, a decreasing ocean biological productivity, an increasing CaCO3 weathering flux and an increasing deep-sea CaCO3 burial flux. The majority of our simulations also predict an increase in terrestrial carbon, coupled with a decrease in ocean and increase in lithospheric carbon. We attribute the increase in terrestrial carbon to a slower soil respiration rate, as well as the preservation rather than destruction of carbon by the LGM ice sheets. An initial comparison of these dominant changes with observations and paleoproxies other than carbon isotope and oxygen data (not evaluated directly in this study) suggests broad agreement. However, we advise more detailed comparisons in the future, and also note that, conceptually at least, our results can only be reconciled with carbon isotope and oxygen data if additional processes not included in our model are brought into play.


Sign in / Sign up

Export Citation Format

Share Document