dynamic global vegetation model
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 62)

H-INDEX

35
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Deborah Zani ◽  
Veiko Lehsten ◽  
Heike Lischke

Abstract. The prediction of species geographic redistribution under climate change (i.e. range shifts) has been addressed by both experimental and modelling approaches and can be used to inform efficient policy measures on the functioning and services of future ecosystems. Dynamic Global Vegetation Models (DGVMs) are considered state-of-the art tools to understand and quantify the spatio-temporal dynamics of ecosystems at large scales and their response to changing environments. They can explicitly include local vegetation dynamics relevant to migration (establishment, growth, seed production), species-specific dispersal abilities and the competitive interactions with other species in the new environment. However, the inclusion of more detailed mechanistic formulations of range shift processes may also widen the overall uncertainty of the model. Thus, a quantification of these uncertainties is needed to evaluate and improve our confidence in the model predictions. In this study, we present an efficient assessment of parameter and model uncertainties combining low-cost analyses in successive steps: local sensitivity analysis, exploration of the performance landscape at extreme parameter values, and inclusion of relevant ecological processes in the model structure. This approach was tested on the newly-implemented migration module of the state-of-the-art DGVM, LPJ-GM 1.0. Estimates of post-glacial migration rates obtained from pollen and macrofossil records of dominant European tree taxa were used to test the model performance. The results indicate higher sensitivity of migration rates to parameters associated with the dispersal kernel (dispersal distances and kernel shape) compared to plant traits (germination rate and maximum fecundity) and highlight the importance of representing rare long-distance dispersal events via fat-tailed kernels. Overall, the successful parametrization and model selection of LPJ-GM will allow simulating plant migration with a more mechanistic approach at larger spatial and temporal scales, thus improving our efforts to understand past vegetation dynamics and predict future range shifts in a context of global change.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 157
Author(s):  
Qian Xiong ◽  
Zhongyi Sun ◽  
Wei Cui ◽  
Jizhou Lei ◽  
Xiuxian Fu ◽  
...  

Droughts that occur in tropical forests (TF) are expected to significantly impact the gross primary production (GPP) and the capacity of carbon sinks. Therefore, it is crucial to evaluate and analyze the sensitivities of TF-GPP to the characteristics of drought events for understanding global climate change. In this study, the standardized precipitation index (SPI) was used to define the drought intensity. Then, the spatially explicit individual-based dynamic global vegetation model (SEIB-DGVM) was utilized to simulate the dynamic process of GPP corresponding to multi-gradient drought scenarios—rain and dry seasons × 12 level durations × 4 level intensities. The results showed that drought events in the dry season have a significantly greater impact on TF-GPP than drought events in the rainy season, especially short-duration drought events. Furthermore, the impact of drought events in the rainy season is mainly manifested in long-duration droughts. Due to abundant rainfall in the rainy season, only extreme drought events caused a significant reduction in GPP, while the lack of water in the dry season caused significant impacts due to light drought. Effective precipitation and soil moisture stock in the rainy season are the most important support for the tropical forest dry season to resist extreme drought events in the study area. Further water deficit may render the tropical forest ecosystem more sensitive to drought events.


Author(s):  
Emma W Littleton ◽  
Kate Dooley ◽  
Gordon Webb ◽  
Anna B. Harper ◽  
Tom Powell ◽  
...  

Abstract Limiting global warming to a 1.5°C temperature rise requires drastic emissions reductions and removal of carbon-dioxide from the atmosphere. Most modelled pathways for 1.5°C assume substantial removals in the form of biomass energy with carbon capture and storage, which brings with it increasing risks to biodiversity and food security via extensive land-use change. Recently, multiple efforts to describe and quantify potential removals via ecosystem-based approaches have gained traction in the climate policy discourse. However, these options have yet to be evaluated in a systematic and scientifically robust way. We provide spatially explicit estimates of ecosystem restoration potential quantified with a Dynamic Global Vegetation Model. Simulations covering forest restoration, reforestation, reduced harvest, agroforestry and silvopasture were combined and found to sequester an additional 93 Gt C by 2100, reducing mean global temperature increase by ~0.12°C (5-95% range 0.06-0.21°C) relative to a baseline mitigation pathway. Ultimately, pathways to achieving the 1.5°C goal garner broader public support when they include land management options that can bring about multiple benefits, including ecosystem restoration, biodiversity protection, and resilient agricultural practices.


2021 ◽  
Author(s):  
Shanlin Tong ◽  
Weiguang Wang ◽  
Jie Chen ◽  
Chong-Yu Xu ◽  
Hisashi Sato ◽  
...  

Abstract. Documenting year-to-year variations in carbon-sequestration potential in terrestrial ecosystems is crucial for the determination of carbon dioxide (CO2) emissions. However, the magnitude, pattern and inner biomass partitioning of carbon-sequestration potential, and the effect of the changes in climate and CO2 on inner carbon stocks, remain poorly quantified. Herein, we use a spatially explicit individual based-dynamic global vegetation model to investigate the influences of the changes in climate and CO2 on the enhanced carbon-sequestration potential of vegetation. The modelling included a series of factorial simulations using the CRU dataset from 1916 to 2015. The results show that CO2 predominantly leads to a persistent and widespread increase in above-ground vegetation biomass carbon-stocks (AVBC) and below-ground vegetation biomass carbon-stocks (BVBC). Climate change appears to play a secondary role in carbon-sequestration potential. Importantly, with the mitigation of water stress, the magnitude of the above- and below-ground responses in vegetation carbon-stocks gradually increases, and the ratio between AVBC and BVBC increases to capture CO2 and sunlight. Changes in the pattern of vegetation carbon storage was linked to regional limitations in water, which directly weakens and indirectly regulates the response of potential vegetation carbon-stocks to a changing environment. Our findings differ from previous modelling evaluations of vegetation that ignored inner carbon dynamics and demonstrates that the long-term trend in increased vegetation biomass carbon-stocks is driven by CO2 fertilization and temperature effects that are controlled by water limitations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chiara Molinari ◽  
Stijn Hantson ◽  
Lars Peter Nieradzik

Fire regimes across the world are expected to be altered by continuing variations in socio-economic conditions and climate. Current global fire-vegetation models are able to represent the present-day fire activity, but it is unclear how well they can simulate past or future scenarios. Here we use sedimentary charcoal-based biomass burning reconstructions to evaluate fire probability and total carbon flux emitted to the atmosphere per year simulated by the dynamic global vegetation model LPJ-GUESS with its incorporated fire model SIMFIRE-BLAZE across the boreal region during the last century. The analyses were run for the whole time period (1900–2000 CE), as well as for the intervals 1900–1950 CE and 1950–2000 CE. The data–model comparison for the 20th century reveals a general disagreement in trends between charcoal reconstructions (with decreasing or stable trends) and simulations (showing an overall increase) at both global (boreal forests) and continental scales (North America and Fennoscandia), as well as for most of the regional sub-areas (Canada, Norway and Sweden). The only exceptions are Alaska and Finland/Russia Karelia, where all the variables increase. Negative correlations between observations and model outputs are also recorded for the two different sub-periods, except for Alaska and North America during the time interval 1900–1950 CE, and Norway and Finland/Russia Karelia between 1950 and 2000 CE. Despite several uncertainties in charcoal records, main differences between modeled and observed fire activity are probably due to limitations in the representation of the human impact on fire regime (especially connected to forest management and landscape fragmentation) in the model simulations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hazuki Arakida ◽  
Shunji Kotsuki ◽  
Shigenori Otsuka ◽  
Yohei Sawada ◽  
Takemasa Miyoshi

AbstractThis study examined the regional performance of a data assimilation (DA) system that couples the particle filter and the Spatially Explicit Individual-based Dynamic Global Vegetation Model (SEIB-DGVM). This DA system optimizes model parameters of defoliation and photosynthetic rate, which are sensitive to phenology in the SEIB-DGVM, by assimilating satellite-observed leaf area index (LAI). The experiments without DA overestimated LAIs over Siberia relative to the satellite-observed LAI, whereas the DA system successfully reduced the error. DA provided improved analyses for the LAI and other model variables consistently, with better match with satellite observed LAI and with previous studies for spatial distributions of the estimated overstory LAI, gross primary production (GPP), and aboveground biomass. However, three main issues still exist: (1) the estimated start date of defoliation for overstory was about 40 days earlier than the in situ observation, (2) the estimated LAI for understory was about half of the in situ observation, and (3) the estimated overstory LAI and the total GPP were overestimated compared to the previous studies. Further DA and modeling studies are needed to address these issues.


2021 ◽  
Author(s):  
Elisabeth Tschumi ◽  
Sebastian Lienert ◽  
Karin van der Wiel ◽  
Fortunat Joos ◽  
Jakob Zscheischler

Abstract. The frequency and severity of droughts and heat waves are projected to increase under global warming. However, the differential impacts of climate extremes on the terrestrial biosphere and anthropogenic CO2 sink remain poorly understood. In this study, we analyse the effects of six hypothetical climate scenarios with differing drought-heat signatures, sampled from a long stationary climate model simulation, on vegetation distribution and land carbon dynamics, as modelled by a dynamic global vegetation model (LPX-Bern v1.4). The six forcing scenarios consist of a Control scenario representing a natural climate, a Noextremes scenario featuring few droughts and heatwaves, a Nocompound scenario which allows univariate hot or dry extremes but no co-occurring extremes, a Hot scenario with frequent heatwaves, a Dry scenario with frequent droughts, and a Hotdry scenario featuring frequent concurrent hot and dry extremes. We find that a climate with no extreme events increases tree coverage by up to 10 % compared to the Control and also increases ecosystem productivity as well as the terrestrial carbon pools. A climate with many heatwaves leads to an overall increase in tree coverage primarily in higher latitudes, while the ecosystem productivity remains similar to the Control. In the Dry and even more so in the Hotdry scenario, tree cover and ecosystem productivity are reduced by up to −4 % compared to the Control. Depending on the vegetation type, the effects from the Hotdry scenario are stronger than the effects from the Hot and Dry scenario combined, illustrating the importance of correctly simulating compound extremes for future impact assessment. Overall, our study illustrates how factorial model experiments can be employed to disentangle the effects from single and compound extremes.


2021 ◽  
Vol 18 (13) ◽  
pp. 4091-4116
Author(s):  
Boris Sakschewski ◽  
Werner von Bloh ◽  
Markus Drüke ◽  
Anna Amelia Sörensson ◽  
Romina Ruscica ◽  
...  

Abstract. A variety of modelling studies have suggested tree rooting depth as a key variable to explain evapotranspiration rates, productivity and the geographical distribution of evergreen forests in tropical South America. However, none of those studies have acknowledged resource investment, timing and physical constraints of tree rooting depth within a competitive environment, undermining the ecological realism of their results. Here, we present an approach of implementing variable rooting strategies and dynamic root growth into the LPJmL4.0 (Lund-Potsdam-Jena managed Land) dynamic global vegetation model (DGVM) and apply it to tropical and sub-tropical South America under contemporary climate conditions. We show how competing rooting strategies which underlie the trade-off between above- and below-ground carbon investment lead to more realistic simulation of intra-annual productivity and evapotranspiration and consequently of forest cover and spatial biomass distribution. We find that climate and soil depth determine a spatially heterogeneous pattern of mean rooting depth and below-ground biomass across the study region. Our findings support the hypothesis that the ability of evergreen trees to adjust their rooting systems to seasonally dry climates is crucial to explaining the current dominance, productivity and evapotranspiration of evergreen forests in tropical South America.


2021 ◽  
Vol 14 (6) ◽  
pp. 4117-4141
Author(s):  
Markus Drüke ◽  
Werner von Bloh ◽  
Stefan Petri ◽  
Boris Sakschewski ◽  
Sibyll Schaphoff ◽  
...  

Abstract. The terrestrial biosphere is exposed to land-use and climate change, which not only affects vegetation dynamics but also changes land–atmosphere feedbacks. Specifically, changes in land cover affect biophysical feedbacks of water and energy, thereby contributing to climate change. In this study, we couple the well-established and comprehensively validated dynamic global vegetation model LPJmL5 (Lund–Potsdam–Jena managed Land) to the coupled climate model CM2Mc, the latter of which is based on the atmosphere model AM2 and the ocean model MOM5 (Modular Ocean Model 5), and name it CM2Mc-LPJmL. In CM2Mc, we replace the simple land-surface model LaD (Land Dynamics; where vegetation is static and prescribed) with LPJmL5, and we fully couple the water and energy cycles using the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS). Several improvements to LPJmL5 were implemented to allow a fully functional biophysical coupling. These include a sub-daily cycle for calculating energy and water fluxes, conductance of the soil evaporation and plant interception, canopy-layer humidity, and the surface energy balance in order to calculate the surface and canopy-layer temperature within LPJmL5. Exchanging LaD with LPJmL5 and, therefore, switching from a static and prescribed vegetation to a dynamic vegetation allows us to model important biospheric processes, including fire, mortality, permafrost, hydrological cycling and the impacts of managed land (crop growth and irrigation). Our results show that CM2Mc-LPJmL has similar temperature and precipitation biases to the original CM2Mc model with LaD. The performance of LPJmL5 in the coupled system compared to Earth observation data and to LPJmL offline simulation results is within acceptable error margins. The historical global mean temperature evolution of our model setup is within the range of CMIP5 (Coupled Model Intercomparison Project Phase 5) models. The comparison of model runs with and without land-use change shows a partially warmer and drier climate state across the global land surface. CM2Mc-LPJmL opens new opportunities to investigate important biophysical vegetation–climate feedbacks with a state-of-the-art and process-based dynamic vegetation model.


Sign in / Sign up

Export Citation Format

Share Document