vegetation feedback
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 19)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 21 (15) ◽  
pp. 11531-11543
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Lin Zhang ◽  
Yang Yang ◽  
...  

Abstract. Fire is an important source of ozone (O3) precursors. The formation of surface O3 can cause damage to vegetation and reduce stomatal conductance. Such processes can feed back to inhibit dry deposition and indirectly enhance surface O3. Here, we apply a fully coupled chemistry–vegetation model to estimate the indirect contributions of global fires to surface O3 through O3–vegetation feedback during 2005–2012. Fire emissions directly increase the global annual mean O3 by 1.2 ppbv (5.0 %) with a maximum of 5.9 ppbv (24.4 %) averaged over central Africa by emitting a substantial number of precursors. Considering O3–vegetation feedback, fires additionally increase surface O3 by 0.5 ppbv averaged over the Amazon in October, 0.3 ppbv averaged over southern Asia in April, and 0.2 ppbv averaged over central Africa in April. During extreme O3–vegetation interactions, such a feedback can rise to >0.6 ppbv in these fire-prone areas. Moreover, large ratios of indirect-to-direct fire O3 are found in eastern China (3.7 %) and the eastern US (2.0 %), where the high ambient O3 causes strong O3–vegetation interactions. With the likelihood of increasing fire risks in a warming climate, fires may promote surface O3 through both direct emissions and indirect chemistry–vegetation feedbacks. Such indirect enhancement will cause additional threats to public health and ecosystem productivity.


Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Melisa A. Giorgis ◽  
Sebastian R. Zeballos ◽  
Lucas Carbone ◽  
Heike Zimmermann ◽  
Henrik von Wehrden ◽  
...  

Abstract Background Fire is an important driver of ecosystem dynamics worldwide. However, knowledge on broad-scale patterns of ecosystem and organism responses to fires is still scarce. Through a systematic quantitative review of available studies across South America, we assessed fire effects on biodiversity and abundance of different organisms (i.e., plants, fungi, invertebrates, and vertebrates), plant fitness, and soil properties under four climate types, and time since the last fire (i.e., early and late post fire). We addressed: (1) What fire effects have been studied across South America? (2) What are the overall responses of biodiversity, abundance, fitness, and soil properties to fires? (3) How do climate and time since fire modulate those responses? Results We analyzed 160 articles reporting 1465 fire responses on paired burned and unburned conditions. We found no effect of fire on biodiversity or on invertebrate abundance, a negative effect on woody plant species and vertebrate abundance, and an increase in shrub fitness. Soil in burned areas had higher bulk density and pH, and lower organic matter and nitrogen. Fire effect was significantly more positive at early than at late post fire for plant fitness and for soil phosphorus and available nitrogen. Stronger negative effects in semiarid climate compared to humid warm climate suggest that higher temperatures and water availability allow a faster ecosystem recovery after fire. Conclusions Our review highlights the complexity of the climate–fire–vegetation feedback when assessing the response of soil properties and different organisms at various levels. The resilience observed in biodiversity may be expected considering the large number of fire-prone ecosystems in South America. The recovery of invertebrate abundance, the reduction of the vertebrate abundance, and the loss of nitrogen and organic matter coincide with the responses found in global reviews at early post-fire times. The strength of these responses was further influenced by climate type and post-fire time. Our synthesis provides the first broad-scale diagnosis of fire effects in South America, helping to visualize strengths, weaknesses, and gaps in fire research. It also brings much needed information for developing adequate land management in a continent where fire plays a prominent socio-ecological role.


Author(s):  
Yuxuan Xue ◽  
Hongwei Lu ◽  
Yanlong Guan ◽  
Peipei Tian ◽  
Tianci Yao

2021 ◽  
Author(s):  
Ryouta O'ishi ◽  
Wing-Le Chan ◽  
Ayako Abe-Ouchi ◽  
Sam Sherriff-Tadano ◽  
Rumi Ohgaito ◽  
...  

<p>We carry out three sets of last interglacial (LIG) experiments, named lig127k, and of pre-industrial experiments, named piControl, both as part of PMIP4/CMIP6 using three versions of the MIROC model: MIROC4m, MIROC4m-LPJ, and MIROC-ES2L. The results are compared with reconstructions from climate proxy data. All models show summer warming over northern high-latitude land, reflecting the differences between the distributions of the LIG and present-day solar irradiance. Globally averaged temperature changes are −0.94 K (MIROC4m), −0.39 K (MIROC4m-LPJ), and −0.43 K (MIROC-ES2L).<br>Only MIROC4m-LPJ, which includes dynamical vegetation feedback from the change in vegetation distribution, shows annual mean warming signals at northern high latitudes, as indicated by proxy data. In contrast, the latest Earth system model (ESM) of MIROC, MIROC-ES2L, which considers only a partial vegetation effect through the leaf area index, shows no change or even annual cooling over large parts of the Northern Hemisphere. Results from the series of experiments show that the inclusion of full vegetation feedback is necessary for the reproduction of the strong annual warming over land at northern high latitudes. The LIG experimental results show that the warming predicted by models is still underestimated, even with dynamical vegetation, compared to reconstructions from proxy data, suggesting that further investigation and improvement to the climate feedback mechanism are needed.</p>


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 12
Author(s):  
Ronja Iffland ◽  
Kristian Förster ◽  
Daniel Westerholt ◽  
María Herminia Pesci ◽  
Gilbert Lösken

In increasingly expanding cities, roofs are still largely unused areas to counteract the negative impacts of urbanization on the water balance and to reduce flooding. To estimate the effect of green roofs as a sustainable low impact development (LID) technique on the building scale, different approaches to predict the runoff are carried out. In hydrological modelling, representing vegetation feedback on evapotranspiration (ET) is still considered challenging. In this research article, the focus is on improving the representation of the coupled soil–vegetation system of green roofs. Relevant data to calibrate and validate model representations were obtained from an existing field campaign comprising several green roof test plots with different characteristics. A coupled model, utilizing both the Penman–Monteith equation to estimate ET and the software EPA stormwater management model (SWMM) to calculate the runoff, was set up. Through the application of an automatic calibration procedure, we demonstrate that this coupled modelling approach (Kling–Gupta efficiency KGE = 0.88) outperforms the standard ET representation in EPA SWMM (KGE = −0.35), whilst providing a consistent and robust parameter set across all green roof configurations. Moreover, through a global sensitivity analysis, the impact of changes in model parameters was quantified in order to aid modelers in simplifying their parameterization of EPA SWMM. Finally, an improved model using the Penman–Monteith equation and various recommendations are presented.


2021 ◽  
Author(s):  
Yadong Lei ◽  
Xu Yue ◽  
Hong Liao ◽  
Lin Zhang ◽  
Yang Yang ◽  
...  

Abstract. Fire is an important source of surface ozone (O3), which causes damage to vegetation and reduces stomatal conductance. Such processes can feed back to inhibit dry deposition and indirectly enhance surface O3. Here, we apply a fully coupled chemistry-vegetation model to estimate the indirect contributions of global fires to surface O3 through O3-vegetation feedback during 2005–2012. Fire emissions directly increase the global mean annual O3 by 1.2 ppbv (5.0 %) with a maximum of 5.9 ppbv (24.4 %) averaged over central Africa by emitting substantial number of precursors. Considering O3-vegetation feedback, fires additionally increase surface O3 by 0.5 ppbv averaged over the Amazon in October, 0.3 ppbv averaged over southern Asia in April, and 0.2 ppbv averaged over central Africa in April. During extreme O3-vegetation interactions, such feedback can rise to > 0.6 ppbv in these fire-prone areas. Moreover, large ratios of indirect-to-direct fire O3 are found in eastern China (3.7 %) and the eastern U.S. (2.0 %), where the high ambient O3 causes strong O3-vegetation interactions. With likelihood of increasing fire risks in a warming climate, fires may promote surface O3 through both direct emissions and indirect chemistry-vegetation feedbacks. Such indirect enhancement will cause additional threats to public health and ecosystem productivity.


2021 ◽  
Vol 17 (1) ◽  
pp. 21-36
Author(s):  
Ryouta O'ishi ◽  
Wing-Le Chan ◽  
Ayako Abe-Ouchi ◽  
Sam Sherriff-Tadano ◽  
Rumi Ohgaito ◽  
...  

Abstract. We carry out three sets of last interglacial (LIG) experiments, named lig127k, and of pre-industrial experiments, named piControl, both as part of PMIP4/CMIP6 using three versions of the MIROC model: MIROC4m, MIROC4m-LPJ, and MIROC-ES2L. The results are compared with reconstructions from climate proxy data. All models show summer warming over northern high-latitude land, reflecting the differences between the distributions of the LIG and present-day solar irradiance. Globally averaged temperature changes are −0.94 K (MIROC4m), −0.39 K (MIROC4m-LPJ), and −0.43 K (MIROC-ES2L). Only MIROC4m-LPJ, which includes dynamical vegetation feedback from the change in vegetation distribution, shows annual mean warming signals at northern high latitudes, as indicated by proxy data. In contrast, the latest Earth system model (ESM) of MIROC, MIROC-ES2L, which considers only a partial vegetation effect through the leaf area index, shows no change or even annual cooling over large parts of the Northern Hemisphere. Results from the series of experiments show that the inclusion of full vegetation feedback is necessary for the reproduction of the strong annual warming over land at northern high latitudes. The LIG experimental results show that the warming predicted by models is still underestimated, even with dynamical vegetation, compared to reconstructions from proxy data, suggesting that further investigation and improvement to the climate feedback mechanism are needed.


2020 ◽  
Vol 20 (6) ◽  
pp. 3841-3857 ◽  
Author(s):  
Cheng Gong ◽  
Yadong Lei ◽  
Yimian Ma ◽  
Xu Yue ◽  
Hong Liao

Abstract. Ozone–vegetation feedback is essential to tropospheric ozone (O3) concentrations. The O3 stomatal uptake damages leaf photosynthesis and stomatal conductance and, in turn, influences O3 dry deposition. Further, O3 directly influences isoprene emissions, an important precursor of O3. The effects of O3 on vegetation further alter local meteorological fields and indirectly influence O3 concentrations. In this study, we apply a fully coupled chemistry–carbon–climate global model (ModelE2-YIBs) to evaluate changes in O3 concentrations caused by O3–vegetation interactions. Different parameterizations and sensitivities of the effect of O3 damage on photosynthesis, stomatal conductance, and isoprene emissions (IPE) are implemented in the model. The results show that O3-induced inhibition of stomatal conductance increases surface O3 on average by +2.1 ppbv (+1.2 ppbv) in eastern China, +1.8 ppbv (−0.3 ppbv) in the eastern US, and +1.3 ppbv (+1.0 ppbv) in western Europe at high (low) damage sensitivity. Such positive feedback is dominated by reduced O3 dry deposition in addition to the increased temperature and decreased relative humidity from weakened transpiration. Including the effect of O3 damage on IPE slightly reduces surface O3 concentrations by influencing precursors. However, the reduced IPE weaken surface shortwave radiative forcing of secondary organic aerosols, leading to increased temperature and O3 concentrations in the eastern US. This study highlights the importance of interactions between O3 and vegetation with regard to O3 concentrations and the resultant air quality.


2020 ◽  
Author(s):  
Maxime Leblanc ◽  
Charlotte Skonieczny ◽  
Pierre Sabatier ◽  
Christophe Colin ◽  
Serge Miska ◽  
...  

<p>Throughout the Quaternary, variations of the insolation received over Africa have governed the monsoon dynamics in this region, generating a recurrence of intense rainfall periods. These African Humid Periods (AHP) are characterized by a major transformation of the Saharan hydrological cycle, favouring the development of vast fluvial systems and tropical humid ecosystems in the currently hyper-arid Sahara Desert. In the current context of global warming, the mechanisms as well as the environmental responses associated with these periods of rapid changes between two extreme climatic contexts remain crucial to understand. Many studies have investigated the mechanisms associated with the last AHP that occurred in the early Holocene (9 to 5ka), and more particularly its initiation and termination. Despite all these efforts, these climatic transitions remain highly debated (e.g. influence of high latitudes versus regional forcing, vegetation feedback). Here, we propose to improve our understanding of the Holocene AHP by studying Saharan dust deposited in Lake Bastani (Corsica, western Mediterranean) during the last 12ka. Indeed, as dust emissions are function of the aridity of their sources, among other parameters such as wind intensity, Saharan dust fluxes recorded over and out of Africa may represent an indirect way to reconstruct Sahara past hydrological changes. Bastani Lake is a high elevation system with a very restricted watershed and has been described as a natural Saharan dust trap during the last 3ka (Sabatier et al., accepted). In this study, we present a Holocene multi-proxy characterization of the fine-grained sediments recorded in Bastani lake. We develop a multiproxies approach based on mineralogy and major elements composition of the clay fraction as well as microscopic observations and quantification of the biogenic silica, which complicates Saharan dust supply estimation in this system. This effort to decipher the Bastani lake sediments composition will allow us to qualify and quantify the Saharan dust signal from the bulk sediment record (watershed erosion/alteration, biogenic silica productivity) in order to discuss, to our knowledge, the northernmost aeolian response of the Sahara desert hydrological changes of the termination of this key climatic transition.</p><p> </p><p>Reference: Sabatier et al., Past African dust inputs in Western Mediterranean area controlled by the complex interaction between ITCZ, NAO and TSI, <em>Climate of the Past</em>, accepted.</p><p>Keywords: Saharan dust, Saharan hydrological cycle, Paleoclimatology, Holocene, clay mineralogy, geochemistry, biogenic silica.</p>


Sign in / Sign up

Export Citation Format

Share Document