Generating functions for a class of one-dimensional random walks

1971 ◽  
Vol 8 (1) ◽  
pp. 110-117
Author(s):  
Ora Engelberg Percus ◽  
Jerome K. Percus

A weighted Markov chain technique is used to find the generating functions for several restricted one-dimensional random walks. Examples with simple restrictions concern the number of penetrations of a penetrable barrier. Examples with compound restrictions include the number of full crossings of the origin. A typical asymptotic evaluation is carried out.

1971 ◽  
Vol 8 (01) ◽  
pp. 110-117
Author(s):  
Ora Engelberg Percus ◽  
Jerome K. Percus

A weighted Markov chain technique is used to find the generating functions for several restricted one-dimensional random walks. Examples with simple restrictions concern the number of penetrations of a penetrable barrier. Examples with compound restrictions include the number of full crossings of the origin. A typical asymptotic evaluation is carried out.


2010 ◽  
Vol 10 (5&6) ◽  
pp. 509-524
Author(s):  
M. Mc Gettrick

We investigate the quantum versions of a one-dimensional random walk, whose corresponding Markov Chain is of order 2. This corresponds to the walk having a memory of one previous step. We derive the amplitudes and probabilities for these walks, and point out how they differ from both classical random walks, and quantum walks without memory.


1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Andrew Bressler ◽  
Robin Pemantle

International audience We analyze nearest neighbor one-dimensional quantum random walks with arbitrary unitary coin-flip matrices. Using a multivariate generating function analysis we give a simplified proof of a known phenomenon, namely that the walk has linear speed rather than the diffusive behavior observed in classical random walks. We also obtain exact formulae for the leading asymptotic term of the wave function and the location probabilities.


1980 ◽  
Vol 17 (1) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


2021 ◽  
Vol 53 (2) ◽  
pp. 335-369
Author(s):  
Christian Meier ◽  
Lingfei Li ◽  
Gongqiu Zhang

AbstractWe develop a continuous-time Markov chain (CTMC) approximation of one-dimensional diffusions with sticky boundary or interior points. Approximate solutions to the action of the Feynman–Kac operator associated with a sticky diffusion and first passage probabilities are obtained using matrix exponentials. We show how to compute matrix exponentials efficiently and prove that a carefully designed scheme achieves second-order convergence. We also propose a scheme based on CTMC approximation for the simulation of sticky diffusions, for which the Euler scheme may completely fail. The efficiency of our method and its advantages over alternative approaches are illustrated in the context of bond pricing in a sticky short-rate model for a low-interest environment and option pricing under a geometric Brownian motion price model with a sticky interior point.


2005 ◽  
Vol 121 (3-4) ◽  
pp. 361-372 ◽  
Author(s):  
C. Boldrighini ◽  
G. Cosimi ◽  
S. Frigio ◽  
A. Pellegrinotti

1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2011 ◽  
Vol 43 (3) ◽  
pp. 782-813 ◽  
Author(s):  
M. Jara ◽  
T. Komorowski

In this paper we consider the scaled limit of a continuous-time random walk (CTRW) based on a Markov chain {Xn,n≥ 0} and two observables, τ(∙) andV(∙), corresponding to the renewal times and jump sizes. Assuming that these observables belong to the domains of attraction of some stable laws, we give sufficient conditions on the chain that guarantee the existence of the scaled limits for CTRWs. An application of the results to a process that arises in quantum transport theory is provided. The results obtained in this paper generalize earlier results contained in Becker-Kern, Meerschaert and Scheffler (2004) and Meerschaert and Scheffler (2008), and the recent results of Henry and Straka (2011) and Jurlewicz, Kern, Meerschaert and Scheffler (2010), where {Xn,n≥ 0} is a sequence of independent and identically distributed random variables.


Sign in / Sign up

Export Citation Format

Share Document