linear speed
Recently Published Documents


TOTAL DOCUMENTS

146
(FIVE YEARS 50)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Vol 34 (06) ◽  
pp. 1761-1767
Author(s):  
Anatoly Ivanovich Zavrazhnov ◽  
Aleksandr Vladimirovich Balashov ◽  
Sergey Petrovich Strygin ◽  
Nikita Yurievich Pustovarov ◽  
Andrey Anatolyevich Zavrazhnov

Mechanical and pneumatic seed drills of both domestic and foreign production are used in Russian farms. They are equipped with a mechanical drive of working tools and an electronic seeding control system. Due to the slipping of the wheels or the breakage of the chains, the sowing of seeds in individual seed dispensers interrupts. According to the results of laboratory and bench-scale studies in respect to soybean seeds, the required power for the electric drive of one seed dispenser was determined, which, depending on the disk rotation speed from 10 to 60 rpm, ranged from 30 to 120 W. By calculation, using the analytical expression, the power, required for the fan drive of a 12-row seed drill, was determined, which, depending on the disk rotation speed, ranged from 1.6 to 2.47 kW. A condition is formulated, which will eliminate the probability of shifting and rolling seeds along the furrow after their fall out of the sowing disc rotating in the opposite direction to the movement of the seeder unit, provided correspondence of the linear speed of the sowing disc and the speed of the seeder unit (the effect of zero overlaps). In this case, the trajectory length of the seeds falling to the furrow should be consistent with the speed of the seeder unit and the seeding rate according to the proposed expression.


2021 ◽  
pp. 193-202
Author(s):  
Jingxin Sun ◽  
Liqin Yang ◽  
Baohui Xu ◽  
Yuming Guo ◽  
Qingliang Cui ◽  
...  

This critical collision damage force of millet and sweet buckwheat grain and the shelling force of shelled granular materials are important basic data for research of threshing and shelling technology and equipment. In order to master the linear velocity and collision force of grain with different moisture content when collision damage occurs, a centrifugal collision test device is designed. Based on the dynamic and kinematic analysis of grain in the centrifugal rotary table, the collision force between grain and steel plate was measured by PVDF piezoelectric pressure sensor and data acquisition system. The results showed that: under the same moisture content, the higher the rotational speed, the higher the grain crushing rate; at the same rotational speed, with the increase of moisture content, the crushing rate first decreased and then increased. When the moisture content of Jingu-21 and Yuqiao-4 is 19.7% and 17.8%, respectively, the grain crushing rate was the lowest. In terms of the anti-collision ability of grain, the optimum moisture content of threshing is between 19.7% and 21% for millet. For sweet buckwheat, the optimum moisture content of threshing is 17.8% ~19%, while the optimum moisture content of shelling by centrifugal sheller is about 11%. The faster the rotational speed of centrifugal rotary table is, the greater the linear speed of grain is, and the greater the collision force is. When the linear velocity of grain was 8.32 m/s and 11.30 m/s respectively, the millet grain moisture content was 11.1% and 20.9% respectively, damage began to appear, and the corresponding collision force was about 5.51 N and 10.6 N, respectively. When the linear velocity of grain was 8.32 m/s and 11.30m/s respectively, and the moisture content was 11.1% and 22.8% of the sweet buckwheat grain respectively, damage began to appear, the corresponding collision force was about 8.92 N and 12.79 N, respectively. When the rotating speed of rotary table was 910 r/min, the linear speed of grain was 27.05 m/s, the crushing rate of millet and sweet buckwheat grain in harvest period were 56.30% and 63.76%, respectively, and the crushing rate of millet and buckwheat grain with 11.1% moisture content were 86.27% and 89.4%, respectively. The research results can provide theoretical basis for design and optimization of millet and sweet buckwheat combine harvester, threshing device and shelling device.


2021 ◽  
Vol 2131 (5) ◽  
pp. 052060
Author(s):  
R Dindorf ◽  
P Wos

Abstract The paper presents a new universal programmable portable measuring device (PMD) intended for the diagnostic and monitoring of hydraulic and pneumatic equipment. PMD offers a simple, complete, and efficient remote monitoring and diagnostic solution for hydraulic and pneumatic equipment. PMD is designed for measurement, recording, and processing of data as well as graphical visualization of registered results on a test stand or in the operating site of hydraulic and pneumatic equipment. PMD is designed to measure parameters used in servicing, repairing, monitoring, and diagnosing hydraulic and pneumatic equipment. Usually, fluidic characteristic quantities (pressure, flow rate, temperature), mechanical quantities (position, linear speed, rotational speed, force, torque, shaft power), and electrical quantities (voltage, current, power) is measured. PMD with WiFi communication is adopted to transfer measurement data via the Industry Internet of Things (IIoT) technology to remote online monitoring and diagnostic hydraulic and pneumatic equipment. Sensors, controllers, and other devices are connected to the computing gateway via their respective protocols.


2021 ◽  
Author(s):  
Ying Liu ◽  
Jiayu Xu ◽  
Guijian Xiao ◽  
Kun Zhou ◽  
Gang Liu

Abstract Key rotating parts such as integral blisks and blades of aero-engines are widely made of titanium alloys. Abrasive belt grinding is one of the effective methods to improve the surface integrity. However, the grinding process produces greater grinding force and higher Grinding temperature,which have an impact on surface quality. At present, the force-heat coupling relationship in the grinding process and its influence on surface quality have not been explored. In this paper, a titanium alloy belt experiment is carried out to detect the force and temperature in the grinding process, this paper explores the influence of the grinding process parameters on the grinding force and temperature, and analyzes the influence on surface integrity of the force and temperature in the grinding process. The results show that the decrease of the belt linear speed, the increase of the feed speed and the grinding depth leads to the increase of the grinding force, the decrease of the feed speed, the increase of the belt linear speed and the grinding depth cause the temperature to rise. The effect of grinding depth on grinding force and grinding temperature is the most significant. And High grinding force and grinding temperature will cause the surface quality to deteriorate and even more serious defects. However, when the maximum temperature of the grinding temperature field reaches above 120°C, the surface roughness of the workpiece decreases from 1.596μm to 1.093μm, and the height of the surface undulation is reduced from 32μm to 19μm. This paper provides a reference for improving the surface integrity of the grinding process.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5934
Author(s):  
Nrusingh Charan Pradhan ◽  
Pramod Kumar Sahoo ◽  
Dilip Kumar Kushwaha ◽  
Indra Mani ◽  
Ankur Srivastava ◽  
...  

Crop geometry plays a vital role in ensuring proper plant growth and yield. Check row planting allows adequate space for weeding in both direction and allowing sunlight down to the bottom of the crop. Therefore, a light detection and ranging (LiDAR) navigated electronic seed metering system for check row planting of maize seeds was developed. The system is comprised of a LiDAR-based distance measurement unit, electronic seed metering mechanism and a wireless communication system. The electronic seed metering mechanism was evaluated in the laboratory for five different cell sizes (8.80, 9.73, 10.82, 11.90 and 12.83 mm) and linear cell speed (89.15, 99.46, 111.44, 123.41 and 133.72 mm·s−1). The research shows the optimised values for the cell size and linear speed of cell were found to be 11.90 mm and 99.46 mm·s−1 respectively. A light dependent resistor (LDR) and light emitting diode (LED)-based seed flow sensing system was developed to measure the lag time of seed flow from seed metering box to bottom of seed tube. The average lag time of seed fall was observed as 251.25.39 ms at an optimised linear speed of cell of 99.46 mm·s−1 and forward speed of 2 km·h−1. This lag time was minimized by advancing the seed drop on the basis of forward speed of tractor, lag time and targeted position. A check row quality index () was developed to evaluate check row planter. While evaluating the developed system at different forward speeds (i.e., 2, 3 and 5 km·h−1), higher standard deviation (14.14%) of check row quality index was observed at forward speed of 5 km·h−1.


Author(s):  
I. L. Rogovskii ◽  

Based on the analysis of most domestic combines, it is established that they have a traditional scheme of threshing and separating device, which includes one or two sequentially arranged threshing threshers and keyboard straw shaker. The design of drumming from rods with cross plates provides, first of all, intensification of process of threshed grain. Cereals are threshed easily, so there is no need to intensify threshing. For example, when harvesting grain harvester KZS-9M "Slavutich" with a gap at the outlet between the threshing drum and the drum 18 mm and the speed of the threshing drum 450 min-1, the loss of threshing was absent in all experiments. In this case, the transverse plates of the drum are an obstacle to the movement of the threshed mass in the threshing-separating device, forming a dead space behind each bar, where a small component of plant mass accumulates. The quality of the threshing and separating device of the combine harvester was determined by the coefficients of undersmilling, separation, crushing and clogging of the grain received for cleaning. Damage to the grain during threshing in the thresher is mainly due to the influence of the circumferential linear velocity of the threshing drum and the gap between the threshing drum and the drum. Therefore, the gap in the threshing space is variable and changes in the direction of decrease from the entrance of the plant mass into the threshing device to its exit. To summarize, we used the gap in the threshing space at the outlet of the thresher. In this regard, the beginning of the tests was at a drum speed of 450 min-1. During the tests it was found that the greatest influence on the damage to the grain has a circular linear speed of the threshing drum. Thus, when increasing the speed of the drum per 100 min-1 from 450 to 550 min-1, the damage increased from 1.5% to 5.5%, ie almost 4 times.


Children ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 748
Author(s):  
Anja Lazić ◽  
Milovan Bratić ◽  
Stevan Stamenković ◽  
Slobodan Andrašić ◽  
Nenad Stojiljković ◽  
...  

Knee pads have become increasingly popular among volleyball players. Given the fact high-intensity activities that are crucial to successfully playing this sport lead to an increased risk of a knee injury, the primary use of knee pads is to prevent potential injury. However, no research has been carried out to explain the effects of knee pads on the most important physical abilities in volleyball players, thus directly affecting performance. This study was undertaken to determine the effects of knee pads on the explosive power of the lower extremities, linear speed, and agility in young female volleyball players. In two separated sessions, 84 female volleyball players (age: 14.83 ± 0.72 years; height: 163.19 ± 8.38 cm; body mass: 53.64 ± 10.42 kg; VE: 5.30 ± 3.39 years) completed squat jumps (SJ), countermovement jumps (CMJ) with and without arm swing, linear sprints at 5-m and 10-m, modified t-test, and 5-10-5 shuttle test. Data analyses included descriptive statistics, paired sample T-tests and use of effect size (ES). There was no statistical difference between the two conditions for SJ (p = 0.156; ES = 0.18), CMJ (p = 0.817; ES = 0.03), CMJ with arm swing (p = 0.194; ES = 0.14), linear sprint at 5 m (p = 0.789; ES = 0.03) and 10 m (p = 0.907; ES = −0.01), modified t-test (p = 0.284; ES = 0.13), and 5-10-5 shuttle test (p = 0.144; ES = 0.19). Wearing knee pads has neither an inhibitory nor positive effects on explosive power of the lower extremities, linear speed, and agility in young female volleyball players.


Author(s):  
Joanna Hrabia-Wiśnios ◽  
Beata Leszczyńska-Madej ◽  
Marcin Madej ◽  
Aleksandra Węglowska

AbstractThe paper presents the results of research on the microstructure and selected mechanical properties of the SnSbCu-bearing alloy after friction stir processing (FSP). The Whorl tool was used for modification; the process was carried out using two rotational speeds of the tool: 280 and 450 RPM and a constant linear speed of 355 mm/min. Microstructure studies were performed employing the techniques of light microscopy and scanning electron microscopy along with analysis of the chemical composition of micro-areas. Additionally, the phase composition was investigated by means of the X-ray diffraction method and statistical analysis of the precipitates present in the investigated alloy. In addition, hardness, flexural strength, and uniaxial compression tests were performed before and after FSP modification. It was proved that using FSP to modify the SnSbCu alloy promotes refinement and homogenization of the microstructure, as well as improvement of the flexural strength, whereas no changes in the hardness level were found.


2021 ◽  
Vol 13 (15) ◽  
pp. 8250
Author(s):  
Gianandrea Salerno ◽  
Manuela Rebora ◽  
Silvana Piersanti ◽  
Valerio Saitta ◽  
Alexander Kovalev ◽  
...  

In the present investigation, we compared the reduction in attachment ability of the southern green stinkbug Nezara viridula (Hemiptera: Pentatomidae) to glass induced by three different nanoparticle (kaolin, zeolite, and calcium carbonate) films. Using traction force experiments, behavioral experiments, and scanning electron microscopy observations, we analyzed the insect attachment ability and linear speed on untreated and treated glass with the three particle films. The three nanomaterials strongly reduced insect attachment ability mainly owing to contamination of attachment pads. The ability to reduce insect attachment was different for the three tested particle films: kaolin and zeolite induced a significantly higher reduction in N. viridula safety factor than calcium carbonate. The coating of the surface was more uniform and compact in kaolin and zeolite compared to calcium carbonate particle film. Moreover, kaolin and zeolite particles can more readily adhere to N. viridula attachment devices, whereas calcium carbonate particles appeared less adherent to the cuticular surface compared to the two aluminosilicate (kaolin and zeolite) particles. Only the application of kaolin reduced insect linear speed during locomotion. Nanoparticle films have a great potential to reduce insect attachment ability and represent a good alternative to the use of insecticides for the control of pentatomid bugs and other pest insects.


2021 ◽  
Vol 79 (1) ◽  
pp. 15-27
Author(s):  
Jordi Arboix-Alió ◽  
Chris Bishop ◽  
Ariadna Benet ◽  
Bernat Buscà ◽  
Joan Aguilera-Castells ◽  
...  

Abstract The direction of inter-limb asymmetries and the change of direction (COD) deficit are two aspects that have increased in recent years. The main objective of the present study was to assess the magnitude of neuromuscular asymmetries in an elite youth female team-sports sample and determine its directionality. Secondary objectives were to evaluate the relationship between COD deficit, linear speed and COD time performance. Elite female youth basketball and handball players (n = 33, age = 16 ± 1.17 y) performed the Single Leg Countermovement Jump in vertical (SLCJ-V), horizontal (SLCJ-H), and lateral (SLCJ-L) directions, the COD and the 10-m sprint. Results showed statistical differences between limbs in all the neuromuscular tests (p < 0.001). The Kappa coefficient showed poor to fair levels of agreement between tasks (K range = -0.087 to 0.233), indicating that asymmetries rarely favoured the same limb between skills. Additionally, small and non-significant correlations were found between the linear sprint capacity and the COD ability. The findings of the present study highlight the independent directionality of asymmetries across tests. The COD deficit does not appear to be much more advantageous than COD total time to measure asymmetry. Practitioners are encouraged to use a fitness testing battery to detect existing side differences and each ability should be specifically trained with functional tasks.


Sign in / Sign up

Export Citation Format

Share Document