scholarly journals Quantum random walks in one dimension via generating functions

2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Andrew Bressler ◽  
Robin Pemantle

International audience We analyze nearest neighbor one-dimensional quantum random walks with arbitrary unitary coin-flip matrices. Using a multivariate generating function analysis we give a simplified proof of a known phenomenon, namely that the walk has linear speed rather than the diffusive behavior observed in classical random walks. We also obtain exact formulae for the leading asymptotic term of the wave function and the location probabilities.

2002 ◽  
Vol 2 (Special) ◽  
pp. 578-595
Author(s):  
N. Konno

In this paper we consider limit theorems, symmetry of distribution, and absorption problems for two types of one-dimensional quantum random walks determined by $2 \times 2$ unitary matrices using our PQRS method. The one type was introduced by Gudder in 1988, and the other type was studied intensively by Ambainis et al. in 2001. The difference between both types of quantum random walks is also clarified.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michel Nguyên Thê

International audience This paper gives a survey of the limit distributions of the areas of different types of random walks, namely Dyck paths, bilateral Dyck paths, meanders, and Bernoulli random walks, using the technology of generating functions only.


2009 ◽  
Vol 79 (3) ◽  
Author(s):  
Chaobin Liu ◽  
Nelson Petulante

1980 ◽  
Vol 17 (01) ◽  
pp. 253-258 ◽  
Author(s):  
R. B. Nain ◽  
Kanwar Sen

For correlated random walks a method of transition probability matrices as an alternative to the much-used methods of probability generating functions and difference equations has been investigated in this paper. To illustrate the use of transition probability matrices for computing the various probabilities for correlated random walks, the transition probability matrices for restricted/unrestricted one-dimensional correlated random walk have been defined and used to obtain some of the probabilities.


1994 ◽  
Vol 49 (9) ◽  
pp. 856-860
Author(s):  
Barbara Drossel ◽  
Siegfried Clar ◽  
Franz Schwabl

Abstract We modify the rules of the self-organized critical forest-fire model in one dimension by allowing the fire to jum p over holes of ≤ k sites. An analytic calculation shows that not only the size distribution of forest clusters but also the size distribution of fires is characterized by the same critical exponent as in the nearest-neighbor model, i.e. the critical behavior of the model is universal. Computer simulations confirm the analytic results.


2003 ◽  
Vol DMTCS Proceedings vol. AC,... (Proceedings) ◽  
Author(s):  
Michael Drmota

International audience In this paper we consider discrete random walks on infinite graphs that are generated by copying and shifting one finite (strongly connected) graph into one direction and connecting successive copies always in the same way. With help of generating functions it is shown that there are only three types for the asymptotic behaviour of the random walk. It either converges to the stationary distribution or it can be approximated in terms of a reflected Brownian motion or by a Brownian motion. In terms of Markov chains these cases correspond to positive recurrence, to null recurrence, and to non recurrence.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olya Mandelshtam ◽  
Xavier Viennot

International audience In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.


1971 ◽  
Vol 8 (1) ◽  
pp. 110-117
Author(s):  
Ora Engelberg Percus ◽  
Jerome K. Percus

A weighted Markov chain technique is used to find the generating functions for several restricted one-dimensional random walks. Examples with simple restrictions concern the number of penetrations of a penetrable barrier. Examples with compound restrictions include the number of full crossings of the origin. A typical asymptotic evaluation is carried out.


Sign in / Sign up

Export Citation Format

Share Document