Limit theorems for general size distributions

1981 ◽  
Vol 18 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Wen-Chen Chen

Let X1, X2, · ··, Xn, · ·· be independent and identically distributed non-negative integer-valued random variables with finite mean and variance. For any positive integer n and m we consider the random vector i.e., L has the same distribution as the conditional distribution of (X1, · ··, Xm) given the condition It is easy to see that our model includes the classical urn model, the Bose–Einstein urn model and the Pólya urn model as special cases. For any non-negative integer s define G(s) = the number of Li′s such that Li = s, and U = the number of Li′s such that Li is an even number; in this paper we study the asymptotic behaviour of the random variables considered above. Some central limit theorems and a multinormal local limit theorem are proved.

1981 ◽  
Vol 18 (01) ◽  
pp. 139-147 ◽  
Author(s):  
Wen-Chen Chen

Let X 1, X 2, · ··, Xn , · ·· be independent and identically distributed non-negative integer-valued random variables with finite mean and variance. For any positive integer n and m we consider the random vector i.e., L has the same distribution as the conditional distribution of (X 1, · ··, Xm ) given the condition It is easy to see that our model includes the classical urn model, the Bose–Einstein urn model and the Pólya urn model as special cases. For any non-negative integer s define G(s) = the number of Li′s such that Li = s, and U = the number of Li′s such that Li is an even number; in this paper we study the asymptotic behaviour of the random variables considered above. Some central limit theorems and a multinormal local limit theorem are proved.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


1984 ◽  
Vol 16 (04) ◽  
pp. 766-803 ◽  
Author(s):  
S. P. Lalley

A local limit theorem for is obtained, where τ a is the first time a random walk Sn with positive drift exceeds a. Applications to large-deviation probabilities and to the crossing of a non-linear boundary are given.


2013 ◽  
Vol 50 (04) ◽  
pp. 1206-1212 ◽  
Author(s):  
Lars Holst

Formulae for ζ(2n) andLχ4(2n+ 1) involving Euler and tangent numbers are derived using the hyperbolic secant probability distribution and its moment generating function. In particular, the Basel problem, where ζ(2) = π2/ 6, is considered. Euler's infinite product for the sine is also proved using the distribution of sums of independent hyperbolic secant random variables and a local limit theorem.


1968 ◽  
Vol 5 (02) ◽  
pp. 334-349 ◽  
Author(s):  
Prem S. Puri

SummaryTwo cases of multiple linearly interconnected linear birth and death processes are considered. It is found that in general the solution of the Kolmogorov differential equations for the probability generating function (p.g.f)gof the random variables involved is not obtainable by standard methods, although one can obtain moments of the random variables from these equations. A method is considered for obtaining an approximate solution forg.This is based on the introduction of a sequence of stochastic processes such that the sequence {f(n)} of their p.g.f.'s tends togasn → ∞in an appropriate manner. The method is applied to the simple case of two birth and death processes with birth and death rates λiandμi, i =1,2, interconnected linearly with transition rates v andδ(see Figure 2). For this case some limit theorems are established and the probability of ultimate extinction of both the processes is considered. In addition, for the special cases (i) λ1=δ= 0, with the remaining rates time dependent and (ii) λ2=δ= 0, with the remaining rates constant, explicit solutions forgare obtained and studied.


1980 ◽  
Vol 87 (1) ◽  
pp. 179-187 ◽  
Author(s):  
Sujit K. Basu ◽  
Makoto Maejima

AbstractLet {Xn} be a sequence of independent random variables each having a common d.f. V1. Suppose that V1 belongs to the domain of normal attraction of a stable d.f. V0 of index α 0 ≤ α ≤ 2. Here we prove that, if the c.f. of X1 is absolutely integrable in rth power for some integer r > 1, then for all large n the d.f. of the normalized sum Zn of X1, X2, …, Xn is absolutely continuous with a p.d.f. vn such thatas n → ∞, where v0 is the p.d.f. of Vo.


Sign in / Sign up

Export Citation Format

Share Document