On the first zero of an empirical characteristic function

1991 ◽  
Vol 28 (3) ◽  
pp. 593-601 ◽  
Author(s):  
H. U. Bräker ◽  
J. Hüsler

We deal with the distribution of the first zero Rn of the real part of the empirical characteristic process related to a random variable X. Depending on the behaviour of the theoretical real part of the underlying characteristic function, cases with a slow exponential decrease to zero are considered. We derive the limit distribution of Rn in this case, which clarifies some recent results on Rn in relation to the behaviour of the characteristic function.

1991 ◽  
Vol 28 (03) ◽  
pp. 593-601
Author(s):  
H. U. Bräker ◽  
J. Hüsler

We deal with the distribution of the first zero Rn of the real part of the empirical characteristic process related to a random variable X. Depending on the behaviour of the theoretical real part of the underlying characteristic function, cases with a slow exponential decrease to zero are considered. We derive the limit distribution of Rn in this case, which clarifies some recent results on Rn in relation to the behaviour of the characteristic function.


2016 ◽  
Vol 6 (1) ◽  
pp. 24
Author(s):  
Andriy Yurachkivsky

Let an $\bR^d$-valued random process $\xi$ be the solution of an equation of the kind $\xi(t)=\xi(0)+\int_0^tA(u)\xi(u)\rd\iota(u)+S(t),$ where $\xi(0)$ is a random variable measurable w.\,r.\,t. some $\sigma$-algebra $\cF(0)$,  $S$ is a random process with $\cF(0)$-conditionally independent increments, $\iota$ is a continuous numeral random process of locally bounded variation, and $A$ is a matrix-valued random process such that for any $t>0$ $\int_0^t\|A(s)\|\ |\rd\iota(s)|<\iy.$ Conditions guaranteing existence of the limiting, as $t\to\iy$, distribution of $\xi(t)$ are found. The characteristic function of this distribution is written explicitly.


1997 ◽  
Vol 13 (2) ◽  
pp. 170-184 ◽  
Author(s):  
John L. Knight ◽  
Stephen E. Satchell

This paper deals with the use of the empirical cumulant generating function to consistently estimate the parameters of a distribution from data that are independent and identically distributed (i.i.d.). The technique is particularly suited to situations where the density function is unknown or unbounded in parameter space. We prove asymptotic equivalence of our technique to that of the empirical characteristic function and outline a six-step procedure for its implementation. Extensions of the approach to non-i.i.d. situations are considered along with a discussion of suitable applications and a worked example.


Sign in / Sign up

Export Citation Format

Share Document