Completely Additive Liftings

1998 ◽  
Vol 4 (1) ◽  
pp. 37-54 ◽  
Author(s):  
Ilijas Farah

The purpose of this communication is to survey a theory of liftings, as developed in author's thesis ([8]). The first result in this area was Shelah's construction of a model of set theory in which every automorphism of P(ℕ)/ Fin, where Fin is the ideal of finite sets, is trivial, or inother words, it is induced by a function mapping integers into integers ([33]). (It is a classical result of W. Rudin [31] that under the Continuum Hypothesis there are automorphisms other than trivial ones.) Soon afterwards, Velickovic ([47]), was able to extract from Shelah's argument the fact that every automorphism of P(ℕ)/ Fin with a Baire-measurable lifting has to be trivial. This, for instance, implies that in Solovay's model ([36]) all automorphisms are trivial. Later on, an axiomatic approach was adopted and Shelah's conclusion was drawn first from the Proper Forcing Axiom (PFA) ([34]) and then from the milder Open Coloring Axiom (OCA) and Martin's Axiom (MA) ([48], see §5 for definitions). Both shifts from the quotient P(ℕ)/ Fin to quotients over more general ideals P(ℕ)/I and from automorphisms to arbitrary ho-momorphisms were made by Just in a series of papers ([14]-[17]), motivated by some problems in algebra ([7, pp. 38–39], [43, I.12.11], [45, Q48]) and topology ([46, p. 537]).

2004 ◽  
Vol 69 (3) ◽  
pp. 799-816 ◽  
Author(s):  
Michael Ray Oliver

Abstract.We examine the question of how many Boolean algebras, distinct up to isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be proved to exist in ZFC alone. The maximum possible value is easily seen to be the cardinality of the continuum ; earlier work by Ilijas Farah had shown that this was the value in models of Martin's Maximum or some similar forcing axiom, but it was open whether there could be fewer in models of the Continuum Hypothesis.We develop and apply a new technique for constructing many ideals whose quotients must be nonisomorphic in any model of ZFC. The technique depends on isolating a kind of ideal, called shallow, that can be distinguished from the ideal of all finite sets even after any isomorphic embedding, and then piecing together various copies of the ideal of all finite sets using distinct shallow ideals. In this way we are able to demonstrate that there are continuum-many distinct quotients by Borel ideals, indeed by analytic P-ideals, and in fact that there is in an appropriate sense a Borel embedding of the Vitali equivalence relation into the equivalence relation of isomorphism of quotients by analytic P-ideals. We also show that there is an uncountable definable wellordered collection of Borel ideals with distinct quotients.


1995 ◽  
Vol 60 (2) ◽  
pp. 431-443 ◽  
Author(s):  
Peter Nyikos ◽  
Leszek Piątkiewicz

AbstractWe prove that a number of axioms, each a consequence of PFA (the Proper Forcing Axiom) are equivalent. In particular we show that TOP (the Thinning-out Principle as introduced by Baumgartner in the Handbook of set-theoretic topology), is equivalent to the following statement: If I is an ideal on ω1 with ω1 generators, then there exists an uncountable X ⊆ ω1, such that either [X]ω ∩ I = ∅ or [X]ω ⊆ I.


2011 ◽  
Vol 76 (4) ◽  
pp. 1126-1136 ◽  
Author(s):  
Andrés Eduardo Caicedo ◽  
Sy-David Friedman

AbstractIf the bounded proper forcing axiom BPFA holds and ω1 = ω1L, then there is a lightface Σ31 well-ordering of the reals. The argument combines a well-ordering due to Caicedo-Veličković with an absoluteness result for models of MA in the spirit of “David's trick.” We also present a general coding scheme that allows us to show that BPFA is equiconsistent with R being lightface Σ41 for many “consistently locally certified” relations R on ℝ. This is accomplished through a use of David's trick and a coding through the Σ2 stable ordinals of L.


2008 ◽  
Vol 73 (3) ◽  
pp. 845-860 ◽  
Author(s):  
Victoria Gitman

AbstractSome 40 years ago, Dana Scott proved that every countable Scott set is the standard system of a model of PA. Two decades later, Knight and Nadel extended his result to Scott sets of size ω1. Here, I show that assuming the Proper Forcing Axiom (PFA), every A-proper Scott set is the standard system of a model of PA. I define that a Scott set is proper if the quotient Boolean algebra /Fin is a proper partial order and A-proper if is additionally arithmetically closed. I also investigate the question of the existence of proper Scott sets.


1990 ◽  
Vol 55 (3) ◽  
pp. 1022-1036 ◽  
Author(s):  
Arnold W. Miller

AbstractIn this paper we ask the question: to what extent do basic set theoretic properties of Loeb measure depend on the nonstandard universe and on properties of the model of set theory in which it lies? We show that, assuming Martin's axiom and κ-saturation, the smallest cover by Loeb measure zero sets must have cardinality less than κ. In contrast to this we show that the additivity of Loeb measure cannot be greater than ω1. Define cof(H) as the smallest cardinality of a family of Loeb measure zero sets which cover every other Loeb measure zero set. We show that card(⌊log2(H)⌋) ≤ cof (H) ≤ card(2H), where card is the external cardinality. We answer a question of Paris and Mills concerning cuts in nonstandard models of number theory. We also present a pair of nonstandard universes M ≼ N and hyperfinite integer H ∈ M such that H is not enlarged by N, 2H contains new elements, but every new subset of H has Loeb measure zero. We show that it is consistent that there exists a Sierpiński set in the reals but no Loeb-Sierpiński set in any nonstandard universe. We also show that it is consistent with the failure of the continuum hypothesis that Loeb-Sierpiński sets can exist in some nonstandard universes and even in an ultrapower of a standard universe.


1972 ◽  
Vol 37 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Rolando Chuaqui

The purpose of this work is to formulate a general theory of forcing with classes and to solve some of the consistency and independence problems for the impredicative theory of classes, that is, the set theory that uses the full schema of class construction, including formulas with quantification over proper classes. This theory is in principle due to A. Morse [9]. The version I am using is based on axioms by A. Tarski and is essentially the same as that presented in [6, pp. 250–281] and [10, pp. 2–11]. For a detailed exposition the reader is referred there. This theory will be referred to as .The reflection principle (see [8]), valid for other forms of set theory, is not provable in . Some form of the reflection principle is essential for the proofs in the original version of forcing introduced by Cohen [2] and the version introduced by Mostowski [10]. The same seems to be true for the Boolean valued models methods due to Scott and Solovay [12]. The only suitable form of forcing for found in the literature is the version that appears in Shoenfield [14]. I believe Vopěnka's methods [15] would also be applicable. The definition of forcing given in the present paper is basically derived from Shoenfield's definition. Shoenfield, however, worked in Zermelo-Fraenkel set theory.I do not know of any proof of the consistency of the continuum hypothesis with assuming only that is consistent. However, if one assumes the existence of an inaccessible cardinal, it is easy to extend Gödel's consistency proof [4] of the axiom of constructibility to .


Sign in / Sign up

Export Citation Format

Share Document