DEMPSTER’S RULE OF COMBINATION

2020 ◽  
pp. 57-73
Author(s):  
Zezheng Yan ◽  
Hanping Zhao ◽  
Xiaowen Mei

AbstractDempster–Shafer evidence theory is widely applied in various fields related to information fusion. However, the results are counterintuitive when highly conflicting evidence is fused with Dempster’s rule of combination. Many improved combination methods have been developed to address conflicting evidence. Nevertheless, all of these approaches have inherent flaws. To solve the existing counterintuitive problem more effectively and less conservatively, an improved combination method for conflicting evidence based on the redistribution of the basic probability assignment is proposed. First, the conflict intensity and the unreliability of the evidence are calculated based on the consistency degree, conflict degree and similarity coefficient among the evidence. Second, the redistribution equation of the basic probability assignment is constructed based on the unreliability and conflict intensity, which realizes the redistribution of the basic probability assignment. Third, to avoid excessive redistribution of the basic probability assignment, the precision degree of the evidence obtained by information entropy is used as the correction factor to modify the basic probability assignment for the second time. Finally, Dempster’s rule of combination is used to fuse the modified basic probability assignment. Several different types of examples and actual data sets are given to illustrate the effectiveness and potential of the proposed method. Furthermore, the comparative analysis reveals the proposed method to be better at obtaining the right results than other related methods.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 495 ◽  
Author(s):  
Ying Zhou ◽  
Yongchuan Tang ◽  
Xiaozhe Zhao

Uncertain information exists in each procedure of an air combat situation assessment. To address this issue, this paper proposes an improved method to address the uncertain information fusion of air combat situation assessment in the Dempster–Shafer evidence theory (DST) framework. A better fusion result regarding the prediction of military intention can be helpful for decision-making in an air combat situation. To obtain a more accurate fusion result of situation assessment, an improved belief entropy (IBE) is applied to preprocess the uncertainty of situation assessment information. Data fusion of assessment information after preprocessing will be based on the classical Dempster’s rule of combination. The illustrative example result validates the rationality and the effectiveness of the proposed method.


2021 ◽  
Vol 8 (3) ◽  
Author(s):  
Sofiia Alpert

Nowadays technologies of UAV-based Remote Sensing are used in different areas, such as: ecological monitoring, agriculture tasks, exploring for minerals, oil and gas, forest monitoring and warfare. Drones provide information more rapidly than piloted aerial vehicles and give images of a very high resolution, sufficiently low cost and high precision.Let’s note, that processing of conflicting information is the most important task in remote sensing. Dempster’s rule of data combination is widely used in solution of different remote sensing tasks, because it can processes incomplete and vague information. However, Dempster’s rule has some disadvantage, it can not deal with highly conflicted data. This rule of data combination yields wrong results, when bodies of evidence highly conflict with each other. That’s why it was proposed a data combination method in UAV-based Remote Sensing. This method has several important advantages: simple calculation and high accuracy. In this paper data combination method based on application of Jaccard coefficient and Dempster’s rule of combination is proposed. The described method can deal with conflicting sources of information. This data combination method based on application of evidence theory and Jaccard coefficient takes into consideration the associative relationship of the evidences and can efficiently handle highly conflicting sources of data (spectral bands).The frequency approach to determine basic probability assignment and formula to determine Jaccard coefficient are described in this paper too. Jaccard coefficient is defined as the size of the intersection divided by the size of the union of the sample sets. Jaccard coefficient measures similarity between finite sets. Some numerical examples of calculation of Jaccard coefficient and basic probability assignments are considered in this work too.This data combination method based on application of Jaccard coefficient and Dempster’s rule of combination can be applied in exploring for minerals, different agricultural, practical and ecological tasks.


Sign in / Sign up

Export Citation Format

Share Document