VISUAL SERVOING AN OMNIDIRECTIONAL MOBILE ROBOT TO PARKING LOT LINES1

Author(s):  
Matthew D. Berkemeier ◽  
Lili Ma
2011 ◽  
Vol 5 (4) ◽  
pp. 569-574
Author(s):  
Atsushi Ozato ◽  
◽  
Noriaki Maru ◽  

This article proposes a Linear Visual Servoing (LVS)-based method of controlling the position and attitude of omnidirectional mobile robots. This article uses two markers to express their target position and attitude in binocular visual space coordinates, based on which new binocular visual space information which includes position and attitude angle information is defined. Binocular visual space information and the motion space of an omnidirectional mobile robot are linearly approximated, and, using the approximation matrix and the difference in the binocular visual space information between a target marker and a robot marker, the robot’s translational velocity and rotational velocity are generated. Since those are all generated based only on disparity information on an image, which is similar to how this is done in existing LVS, a camera angle is not required. Thus, the method is robust against calibration errors in camera angles, as is existing LVS. The effectiveness of the proposed method is confirmed by simulation.


ROBOT ◽  
2012 ◽  
Vol 34 (2) ◽  
pp. 144 ◽  
Author(s):  
Changlong YE ◽  
Huaiyong LI ◽  
Shugen MA ◽  
Huichao NI

Robotics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 48
Author(s):  
Mahmood Reza Azizi ◽  
Alireza Rastegarpanah ◽  
Rustam Stolkin

Motion control in dynamic environments is one of the most important problems in using mobile robots in collaboration with humans and other robots. In this paper, the motion control of a four-Mecanum-wheeled omnidirectional mobile robot (OMR) in dynamic environments is studied. The robot’s differential equations of motion are extracted using Kane’s method and converted to discrete state space form. A nonlinear model predictive control (NMPC) strategy is designed based on the derived mathematical model to stabilize the robot in desired positions and orientations. As a main contribution of this work, the velocity obstacles (VO) approach is reformulated to be introduced in the NMPC system to avoid the robot from collision with moving and fixed obstacles online. Considering the robot’s physical restrictions, the parameters and functions used in the designed control system and collision avoidance strategy are determined through stability and performance analysis and some criteria are established for calculating the best values of these parameters. The effectiveness of the proposed controller and collision avoidance strategy is evaluated through a series of computer simulations. The simulation results show that the proposed strategy is efficient in stabilizing the robot in the desired configuration and in avoiding collision with obstacles, even in narrow spaces and with complicated arrangements of obstacles.


1999 ◽  
Vol 17 (1) ◽  
pp. 51-60 ◽  
Author(s):  
Jun Tang ◽  
Keigo Watanabe ◽  
Katsutoshi Kuribayashi ◽  
Yamato Shiraishi

Sign in / Sign up

Export Citation Format

Share Document