scholarly journals Factors Affecting Tertiary Recrystallization of Thin Silicon Steel Sheets

1993 ◽  
Vol 57 (1) ◽  
pp. 119-124
Author(s):  
Kazushi Ishiyama ◽  
Ken Ichi Arai ◽  
Takashi Honda ◽  
Masaki Nakano
2007 ◽  
Vol 42 (20) ◽  
pp. 8667-8670 ◽  
Author(s):  
Gao Xiuhua ◽  
Qi Kemin ◽  
Qiu Chunlin ◽  
Tian Yanwen

1993 ◽  
Vol 57 (1) ◽  
pp. 108-113 ◽  
Author(s):  
Kazushi Ishiyama ◽  
Ken Ichi Arai ◽  
Takashi Honda ◽  
Masaki Nakano ◽  
Jirou Harase ◽  
...  

2020 ◽  
Vol 14 (3) ◽  
pp. 242-249
Author(s):  
Fabian Müller ◽  
Gregor Bavendiek ◽  
Nora Leuning ◽  
Benedikt Schauerte ◽  
Kay Hameyer

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5105
Author(s):  
Chen ◽  
Lin ◽  
Chang ◽  
Cheng ◽  
Chen ◽  
...  

In this paper, we demonstrate an innovative electromagnetic targeting system utilizing a passive magnetic-flux-concentrator for tracking endobronchoscope used in the diagnosis process of lung cancer tumors/lesions. The system consists of a magnetic-flux emitting coil, a magnetic-flux receiving electromagnets-array, and high permeability silicon-steel sheets rolled as a collar (as the passive magnetic-flux-concentrator) fixed in a guide sheath of an endobronchoscope. The emitting coil is used to produce AC magnetic-flux, which is consequently received by the receiving electromagnets-array. Due to the electromagnetic-induction, a voltage is induced in the receiving electromagnets-array. When the endobronchoscope’s guide sheath (with the silicon-steel collar) travels between the emitting coil and the receiving electromagnets-arrays, the magnetic flux is concentrated by the silicon-steel collar and thereby the induced voltage is changed. Through analyzing the voltage–pattern change, the location of the silicon–steel collar with the guide sheath is targeted. For testing, a bronchial-tree model for training medical doctors and operators is used to test our system. According to experimental results, the system is successfully verified to be able to target the endobronchoscope in the bronchial-tree model. The targeting errors on the x-, y- and z-axes are 9 mm, 10 mm, and 5 mm, respectively.


Sign in / Sign up

Export Citation Format

Share Document