scholarly journals Grain-Boundary Sliding in AZ31 Magnesium Alloys at Room Temperature to 523 K

2003 ◽  
Vol 44 (4) ◽  
pp. 445-451 ◽  
Author(s):  
J. Koike ◽  
R. Ohyama ◽  
T. Kobayashi ◽  
M. Suzuki ◽  
K. Maruyama
2003 ◽  
Vol 419-422 ◽  
pp. 237-242 ◽  
Author(s):  
R. Ohyama ◽  
Junichi Koike ◽  
T. Kobayashi ◽  
Mayumi Suzuki ◽  
Kouichi Maruyama

Materialia ◽  
2019 ◽  
Vol 5 ◽  
pp. 100189 ◽  
Author(s):  
Samuel Hémery ◽  
Christophe Tromas ◽  
Patrick Villechaise

2012 ◽  
Vol 735 ◽  
pp. 67-72
Author(s):  
Kunio Funami ◽  
Daisuke Yamashita ◽  
Kohji Suzuki ◽  
Masafumi Noda

Abstract. This study examined the critical plastic formability limit of a fine-structure AZ31 magnesium alloy plate under warm and high temperature based on the strength of a magnesium alloy that has cavities at room temperature. The cyclic hot free-forging process as pre-form working following rolling at a light reduction ratio fabricated a fine-structure AZ31 magnesium alloy plate. The appearance of the cavities was examined in detail together with changes in the structure and preparation methods before further damage at high temperatures with increasing uni-and biaxial plastic deformation. The allowable deformation limit in the super plasticity process can be estimated from the strength of the deformed material and forming limit diagram (FLD) at room temperature. During high-temperature deformation, cavities are produced by stress concentrations at grain boundary triple points and striation bands due to grain boundary sliding. The cavitations growth behavior is dependent upon deformation conditions, and a high percentage of large cavities occupy the sample surface as a large amount of grain boundary sliding is present, i.e., as uniform elongation grows larger, the cavity size also increases. In a case where 200% uniaxial strain was applied to a fine-grained structure material at a temperature of 623K under a strain rate of 10-4s-1, the tensile strength at room temperature decreased about 13%, and elongation was 10% less, compared with that of a material to which no load was applied due to the influence of cavities. In a case of biaxial deformation, the values were 28% lower. It is possible to draw a FLD based on the cavity incidence fraction .


2010 ◽  
Vol 667-669 ◽  
pp. 915-920
Author(s):  
Konstantin Ivanov ◽  
Evgeny V. Naydenkin

Deformation mechanisms occurring by tension of ultrafine-grained aluminum processed by equal-channel angular pressing at room temperature are investigated using comparative study of the microstructure before and after tensile testing as well as deformation relief on the pre-polished surface of the sample tested. Deformation behavior and structure evolution during tension suggest development of grain boundary sliding in addition to intragrain dislocation slip. Contribution grain boundary sliding to the overall deformation calculated using the magnitude of shift of grains relative to each other is found to be ~40%.


Small ◽  
2013 ◽  
Vol 10 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Zachary H. Aitken ◽  
Dongchan Jang ◽  
Christopher R. Weinberger ◽  
Julia R. Greer

2016 ◽  
Vol 838-839 ◽  
pp. 106-109 ◽  
Author(s):  
Tetsuya Matsunaga ◽  
Hidetoshi Somekawa ◽  
Hiromichi Hongo ◽  
Masaaki Tabuchi

This study investigated strain-rate sensitivity (SRS) in an as-extruded AZ31 magnesium (Mg) alloy with grain size of about 10 mm. Although the alloy shows negligible SRS at strain rates of >10-5 s-1 at room temperature, the exponent increased by one order from 0.008 to 0.06 with decrease of the strain rate down to 10-8 s-1. The activation volume (V) was evaluated as approximately 100b3 at high strain rates and as about 15b3 at low strain rates (where b is the Burgers vector). In addition, deformation twin was observed only at high strain rates. Because the twin nucleates at the grain boundary, stress concentration is necessary to be accommodated by dislocation absorption into the grain boundary at low strain rates. Extrinsic grain boundary dislocations move and engender grain boundary sliding (GBS) with low thermal assistance. Therefore, GBS enhances and engenders SRS in AZ31 Mg alloy at room temperature.


2016 ◽  
Vol 838-839 ◽  
pp. 59-65 ◽  
Author(s):  
Hiroyuki Watanabe ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

Texture change during superplastic deformation was examined and compared in two magnesium alloys with different chemical composition. These alloys were extruded to refine the microstructure. The pre-existing basal texture of both alloys became slightly more random within the bulk probably owing to grain boundary sliding and the accompanying grain rotation. However, the texture changes differed between tensile and compressive deformation along the extrusion (longitudinal) direction. This fact suggests that dislocation slip is important in superplastic deformation. It was concluded that dislocation slip acts primarily as an accommodation mechanism for grain boundary sliding.


Sign in / Sign up

Export Citation Format

Share Document