microstructure observation
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 93)

H-INDEX

14
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 343
Author(s):  
Huihui Song ◽  
Yuhu Hu ◽  
Jiale Zhang ◽  
Jinyu Fang ◽  
Xueling Hou

The melt-spun ribbons of LaFe11.5Si1.5Cx (x = 0, 0.1, 0.2, 0.3) compounds are prepared by the melt fast-quenching method. The doping of C is beneficial to the nucleation and precipitation of the La (Fe, Si)13 phase, which is indicated by the microstructure observation and the elemental analysis. Subsequently, the ribbons of LaFe11.5Si1.5C0.2 are annealed at different times, and the phase composition, the microstructures, and the magnetic properties are investigated. The LaFe11.5Si1.5C0.2 ribbons annealed at 1273 K for 2 h achieved the best magnetic properties, and the maximum isothermal magnetic entropy change with a value of 9.45 J/(kg·K) upon an applied field of 1.5 T at an increased Curie temperature 255 K.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Yuntao Xi ◽  
Mao Jia ◽  
Jun Zhang ◽  
Wanli Zhang ◽  
Daoyong Yang ◽  
...  

In this manuscript, the influence of gallium content additions of Al-Zn-In-Mg alloy was investigated through electrochemical techniques and microstructure observation in 3.5 wt% NaCl solution. The results indicated that Al-Zn-In-Mg-0.03Ga alloy has the best discharge performance among all alloys. We propose that this is due to the fact that gallium addition to the Al-4Zn-In-Mg alloy improves the discharge activity of the alloy as well as elevating its anodic efficiency. In particular, the effect of gallium addition to improve discharge activity tends to be a parabolic curve, in which there is an increase when the gallium is first added that rises to the maximum anode current efficiency of about 98.25% whenever gallium content is 0.03 wt%.


2021 ◽  
Vol 37 (6) ◽  
pp. 738-747
Author(s):  
Sung Mo Cho ◽  
Nam Chul Cho

This study attempted to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced as a direct smelting method restoration experiment for each raw material of iron. To this end, four hammer scale groups were set up, respectively, by experimenting with Gyeongju-Gampo Iron sand and Yangyang Iron ore. For the analysis, principal component analysis, compound analysis, microstructure observation, and chemical composition were confirmed. As a result of principal component analysis, as forging and refining progressed, the content of Fe increased and the content of non-metallic objects decreased. As a result of compound analysis, iron oxide-based compounds were identified. As a result of confirming microstructure and chemical composition, Wüstite and Fayalite were observed overall, and agglomerated Wüstite were observed in some. Magnetite on shape of polygon and pillar was observed. In addition, it was confirmed that internal defects, impurities, and non-metallic interventions gradually decreased. In the future, it is necessary to investigate the metallurgical characteristic through material scientific analysis of hammer scale produced through restoration experiments using various raw material of iron, and compare them with those excavated from Iron manufacture ruins.


2021 ◽  
Author(s):  
Xuechun Li ◽  
Hai-Shan Zhou ◽  
Hao-Dong Liu ◽  
Lu Wang ◽  
Guang-Nan Luo

Abstract Experiments concerning the effect of helium (He) plasma exposure on deuterium (D) plasma-driven permeation (PDP) through tungsten (W) foils in a linear plasma facility has been performed. 0.05 mm thick W foils were exposed to ~2×1020 m-2s-1 He plasma with various fluences at 883 K. After He irradiating, D permeation tests were performed for the samples and retention was also measured by high-resolution thermal desorption spectroscopy (TDS). It was observed that He pre-irradiation resulted in a significant reduction of D permeation and retention in W. Microstructure observation indicated that the surfaces of samples after He irradiation turned rough and He nanobubbles were formed near the surface. The defective structure including He nanobubbles very likely enhances D reemission and accordingly reduces the permeation and retention in He pre-irradiated W.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 211
Author(s):  
Mateusz Sitarz ◽  
João Castro-Gomes ◽  
Izabela Hager

Mineral geopolymer binders can be an attractive and more sustainable alternative to traditional Portland cement materials for special applications. In geopolymer technology the precursor is a source of silicon and aluminium oxides, the second component is an alkaline solution. In the synthesis of geopolymer binders the most commonly used alkaline solution is a mixture of sodium or potassium water glass with sodium or potassium hydroxide or silicate solution with a low molar ratio, which is more convenient and much safer in use. In this paper, we present the influence of sodium or potassium silicate solution on the physical and mechanical properties of fly ash and ground granulated blast furnace slag-based geopolymer mortars. Mercury intrusion porosimetry and microstructural observation allowed for comparing the structure of materials with a different type of alkaline solution. The evolution of compressive and flexural tensile strength with time determined for composites using 10%, 30% and 50% slag contents (referring to fly ash mass) was analysed. The tests were performed after 3, 7, 14 and 28 days. It was observed that, as the amount of slag used increases in the precursor, the strength of the material grows. Mortars with the sodium alkaline solution were characterised by a higher strength at a young age. However, the values of strength 28 days were higher for geopolymers with potassium alkaline solution reaching 75 MPa in compression. Geopolymer mortar microstructure observation indicates a high matrix heterogeneity with numerous microcracks. Matrix defects may be caused by the rapid kinetics of the material binding reaction or shrinkage associated with the drying of the material.


2021 ◽  
Vol 413 ◽  
pp. 217-224
Author(s):  
Martin Vlach ◽  
Veronika Kodetová ◽  
Hana Kudrnová ◽  
Michal Leibner ◽  
Sebastien Zikmund ◽  
...  

The commercial Al–Zn–Mg–Cu-based alloys (7xxx series) are widely used in metalworking, automotive and aircraft industries as well as in aeronautical applications. The positive effect of the Sc,Zr-addition on mechanical properties of laboratory Al-based alloys is generally known. The microstructure, mechanical and thermal properties of the conventionally cast, heat-treated and cold-rolled Al–Zn–Mg–Cu (–Sc–Zr) alloys during isochronal annealing and natural ageing were studied. Microstructure observation by scanning electron microscopy and transmission electron microscopy proved the Zn,Mg,Cu-containing eutectic phase at grain boundaries. The distinct changes in microhardness curves as well as in a heat flow of the alloys studied are mainly caused by dissolution of the clusters/Guinier-Preston (GP) zones and precipitation of particles from the Al–Zn–Mg–Cu system. An easier diffusion of Zn, Mg and Cu atoms along dislocations in the cold-rolled alloys is responsible for the precipitation of the Zn,Mg,Cu-containing particles at lower temperatures compared to the cast alloys. Microhardness values of the heat-treated alloys increase immediately from the beginning of natural ageing due to the formation of the clusters/GP zones. Addition of Sc and Zr elements results in a higher hardness above ~ 270 °C due to a strengthening by coherent secondary Al3(Sc,Zr) particles with a good thermal stability. Sc,Zr-addition has probably no influence on the evolution of the solute clusters/GP zones.


POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 35
Author(s):  
Garth Raditya ◽  
Erwin Siahaan ◽  
Abrar Riza

Engine mounting is one of the car component which is has optimize function to obtain thesystem in the car is extremely perfect. The engine mounting has to be have behavior ductile by strongestenough to support the car engine whether in rest and moving position. To obtain car engine mountingwhich has these function it has to be treated by treatment. The method was used by using Heat TreatmentSystem which we were Hardening and Tempering. Heat treatment of engine mounting is needed toanalyze the microstructure and mechanical properties of low carbon steel used. Tests carried out attemperatures of 800oC, 850oC, 900oC and normal conditions without heat treatment. Then continued withimpact charpy testing, vickers hardness testing, microstructure observation using microscope and SEM.The tests are carried out in accordance with ASTM E23, ASTM E92, ASTM A370 standards. The Vickerstest results provide the lowest HV value of 118.7Hv at 900oC, while the normal condition is at 137.409Hv.The charpy impact test results give the lowest value of 0.06 j / mm2 under normal conditions, while at900oC at 0.0962 j / mm2. The results with microscopy and SEM, the greater the temperature given to heattreatment, the less pearlite will be, while the amount of ferrite and austenite increases which makes theengine mounting more toughness.


2021 ◽  
Vol 105 (1) ◽  
pp. 371-380
Author(s):  
Jiri Prochazka ◽  
David Dobrocky ◽  
Zdenek Joska ◽  
Chien Nguyen ◽  
Jan Sedlacek ◽  
...  

In the paper an effect of a diffusion technology such as gaseous ferritic nitrocarburizing on the surface properties of selected alloyed case-hardening steel was tested. The steel 18CrNiMo7-6, primarily predetermined for carburizing and frequently utilized in manufacturing of highly strained components, where high core tensile strength as well as hard surface is demanded, was exposed to gaseous ferritic nitrocarburizing. Such treated surface was subjected to experimental methods. The microstructure observation and the determination of the white layer thickness was performed on the Opto-digital microscope Olympus DSX500i. The nitriding hardness depth of the surface layer from the microhardness profiles obtained by the microhardness tester LM247 AT LECO was deduced. The wear resistance was assessed by utilizing the Scratch test method performed on the tribometer Bruker UMT-3 TriboLab. Results of the measurements present an effect of gaseous ferritic nitrocarburizing on the surface properties of the steel 18CrNiMo7-6 and provide a perception of possibility to substitute the frequently utilized carburizing by the gaseous ferritic nitrocarburizing.


2021 ◽  
Vol 904 ◽  
pp. 82-87
Author(s):  
Zhi Juan Zhao ◽  
Xue Tao Zhang ◽  
Qiang Dai ◽  
Yan Rong ◽  
Jing Miao Li ◽  
...  

In this study, the mechanical properties and intergranular corrosion properties of 347H austenitic stainless steel were studied by tensile test, impact test, double-ring electrochemical potentiodynamic reactivation test (DL-EPR) and microstructure observation in three states of solution, primary and twice stabilized state. Results showed that the key mechanical properties of 347H stainless steel under three different conditions had little change, and the mechanical properties at room temperature were not affected by the stabilizing heat treatment. After 12h of sensitization, the solution material showed obvious sensitization behavior, and the Ir/Ia index exceeded 0.3, indicating that the material entered the range of complete sensitization. Both primary and twice stabilizing heat treatment can significantly reduce the occurrence time of sensitization and prevent the sensitization process. However, the stabilizing heat treatment cannot completely prevent the material sensitization, and it must be combined with other methods .


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7026
Author(s):  
Norizatie Muhammad Zaki ◽  
Nurul Azhani Yunus ◽  
Muhamad Shakir Yusoff ◽  
Saiful Amri Mazlan ◽  
Siti Aishah Abdul Aziz ◽  
...  

This paper investigated the effects of petroleum-based oils (PBOs) as a dispersing aid on the physicochemical characteristics of natural rubber (NR)-based magnetorheological elastomers (MREs). The addition of PBOs was expected to overcome the low performance of magnetorheological (MR) elastomers due to their inhomogeneous dispersion and the mobility of magnetic particles within the elastomer matrix. The NR-based MREs were firstly fabricated by mixing the NR compounds homogeneously with different ratios of naphthenic oil (NO), light mineral oil (LMO), and paraffin oil (PO) to aromatic oil (AO), with weight percentage ratios of 100:0, 70:30, 50:50, and 30:70, respectively. From the obtained results, the ratios of NO mixed with low amounts of AO improved the material physicochemical characteristics, such as thermal properties. Meanwhile, LMO mixed the AO led to the best results for curing characteristics, microstructure observation, and magnetic properties of the MREs. We found that the LMO mixed with a high content of AO could provide good compatibility between the rubber molecular and magnetic particles due to similar chemical structures, which apparently enhance the physicochemical characteristics of MREs. In conclusion, the 30:70 ratio of LMO:AO is considered the preferable dispersing aid for MREs due to structural compounds present in the oil that enhance the physicochemical characteristics of the NR-based MREs.


Sign in / Sign up

Export Citation Format

Share Document