1718-P: Heme Oxygenase-1 Promotes Hepatic Glucose Production via Increasing the Intracellular Ferrous Iron

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1718-P ◽  
Author(s):  
WANG LIAO ◽  
WANBAO YANG ◽  
QUAN PAN ◽  
ZHENG SHEN ◽  
WEIQI AI ◽  
...  
2021 ◽  
Author(s):  
Ada Admin ◽  
Wang Liao ◽  
Wanbao Yang ◽  
Zheng Shen ◽  
Weiqi Ai ◽  
...  

The liver is a key player for maintaining glucose homeostasis. Excessive hepatic glucose production is considered to be a key for the onset of type 2 diabetes mellitus. The primary function of heme oxygenase-1 (HO1) is to catalyze the degradation of heme into biliverdin, ferrous iron, and carbon monoxide. Previous studies have demonstrated that the degradation of heme by HO1 in the liver results in mitochondrial dysfunction and drives insulin resistance. In this study, by overexpressing HO1 in hepatocytes and mice, we showed that HO1 promotes gluconeogenesis in a Foxo1-dependent manner. Importantly, HO1 overexpression increased the generation of ferrous iron in the liver, which further activates NF-<a>κB</a> and phosphorylates Foxo1 at Ser273 to enhance gluconeogenesis. We further assessed the role of HO1 in insulin-resistant L-DKO (liver-specific knockout of IRS1 and IRS2 genes) mice, which exhibit upregulation of HO1 in the liver and hepatic ferrous iron overload. HO1 knockdown by shRNA or treatment of iron chelator rescued the aberrant gluconeogenesis in L-DKO mice. In addition, we found that systemic iron overload promotes gluconeogenesis by activating hepatic PKA→Foxo1 axis. Thus, our results demonstrate the role of HO1 in regulating hepatic iron status and Foxo1 to control gluconeogenesis and blood glucose.


2021 ◽  
Author(s):  
Ada Admin ◽  
Wang Liao ◽  
Wanbao Yang ◽  
Zheng Shen ◽  
Weiqi Ai ◽  
...  

The liver is a key player for maintaining glucose homeostasis. Excessive hepatic glucose production is considered to be a key for the onset of type 2 diabetes mellitus. The primary function of heme oxygenase-1 (HO1) is to catalyze the degradation of heme into biliverdin, ferrous iron, and carbon monoxide. Previous studies have demonstrated that the degradation of heme by HO1 in the liver results in mitochondrial dysfunction and drives insulin resistance. In this study, by overexpressing HO1 in hepatocytes and mice, we showed that HO1 promotes gluconeogenesis in a Foxo1-dependent manner. Importantly, HO1 overexpression increased the generation of ferrous iron in the liver, which further activates NF-<a>κB</a> and phosphorylates Foxo1 at Ser273 to enhance gluconeogenesis. We further assessed the role of HO1 in insulin-resistant L-DKO (liver-specific knockout of IRS1 and IRS2 genes) mice, which exhibit upregulation of HO1 in the liver and hepatic ferrous iron overload. HO1 knockdown by shRNA or treatment of iron chelator rescued the aberrant gluconeogenesis in L-DKO mice. In addition, we found that systemic iron overload promotes gluconeogenesis by activating hepatic PKA→Foxo1 axis. Thus, our results demonstrate the role of HO1 in regulating hepatic iron status and Foxo1 to control gluconeogenesis and blood glucose.


2013 ◽  
Vol 51 (01) ◽  
Author(s):  
S Gul ◽  
KH Holzmann ◽  
F Leithäuser ◽  
H Maier ◽  
B Böhm ◽  
...  

1989 ◽  
Vol 120 (3_Suppl) ◽  
pp. S20
Author(s):  
M.J. MÜLLER ◽  
K.J. ACHESON ◽  
A. G. BURGER ◽  
E. JEQUIER ◽  
A. VON ZUR MÜHLEN

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2441-PUB ◽  
Author(s):  
QUAN PAN ◽  
YUNMEI CHEN ◽  
HUI YAN ◽  
WANBAO YANG ◽  
ZHENG SHEN ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 64-LB
Author(s):  
JEONGRIM KO ◽  
TAE NYUN KIM ◽  
DAE YUN SEO ◽  
JIN HAN

Diabetes ◽  
1994 ◽  
Vol 43 (5) ◽  
pp. 661-666 ◽  
Author(s):  
Z. Barrou ◽  
E. R. Seaquist ◽  
R. P. Robertson

Diabetes ◽  
1986 ◽  
Vol 35 (2) ◽  
pp. 186-191 ◽  
Author(s):  
I. Hansen ◽  
R. Firth ◽  
M. Haymond ◽  
P. Cryer ◽  
R. Rizza

Sign in / Sign up

Export Citation Format

Share Document