hepatic glucose
Recently Published Documents


TOTAL DOCUMENTS

1570
(FIVE YEARS 209)

H-INDEX

95
(FIVE YEARS 9)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 120
Author(s):  
Hussein Herz ◽  
Yang Song ◽  
Yuanchao Ye ◽  
Liping Tian ◽  
Benjamin Linden ◽  
...  

Background/Aim: Given their widespread use and their notorious effects on the lining of gut cells, including the enteroendocrine cells, we explored if chronic exposure to non-steroidal anti-inflammatory drugs (NSAIDs) affects metabolic balance in a mouse model of NSAID-induced enteropathy. Method: We administered variable NSAIDs to C57Blk/6J mice through intragastric gavage and measured their energy balance, glucose hemostasis, and GLP-1 levels. We treated them with Exendin-9 and Exendin-4 and ran a euglycemic-hyperinsulinemic clamp. Results: Chronic administration of multiple NSAIDs to C57Blk/6J mice induces ileal ulcerations and weight loss in animals consuming a high-fat diet. Despite losing weight, NSAID-treated mice exhibit no improvement in their glucose tolerance. Furthermore, glucose-stimulated (glucagon-like peptide -1) GLP-1 is significantly attenuated in the NSAID-treated groups. In addition, Exendin-9—a GLP-1 receptor antagonist—worsens glucose tolerance in the control group but not in the NSAID-treated group. Finally, the hyper-insulinemic euglycemic clamp study shows that endogenous glucose production, total glucose disposal, and their associated insulin levels were similar among an ibuprofen-treated group and its control. Exendin-4, a GLP-1 receptor agonist, reduces insulin levels in the ibuprofen group compared to their controls for the same glucose exchange rates. Conclusions: Chronic NSAID use can induce small intestinal ulcerations, which can affect intestinal GLP-1 production, hepatic insulin sensitivity, and consequently, hepatic glucose production.


Author(s):  
Nida Tanataweethum ◽  
Allyson Trang ◽  
Chaeeun Lee ◽  
Jhalak Mehta ◽  
Neha Patel ◽  
...  

Abstract The development of hepatic insulin resistance (IR) is a critical factor in developing type 2 diabetes (T2D), where insulin fails to inhibit hepatic glucose production but retains its capacity to promote hepatic lipogenesis. Improving insulin sensitivity can be effective in preventing and treating T2D. However, selective control of glucose and lipid synthesis has been difficult. It is known that excess white adipose tissue is detrimental to insulin sensitivity, whereas brown adipose tissue transplantation can restore it in diabetic mice. However, challenges remain in our understanding of liver-adipose communication because the confounding effects of hypothalamic regulation of metabolic function cannot be ruled out in previous studies. There is a lack of in vitro models that use primary cells to study cellular-crosstalk under insulin resistant conditions. Building upon our previous work on the microfluidic primary liver and adipose organ-on-chips, we report for the first time the development of integrated insulin resistant liver-adipose (white and brown) organ-on-chip. The design of the microfluidic device was carried out using computational fluid dynamics; the experimental studies were conducted by carrying out detailed biochemical analysis RNA-seq analysis on both cell types. Further, we tested the hypothesis that brown adipocytes regulated both hepatic insulin sensitivity and lipogenesis. Our results show effective co-modulation of hepatic glucose and lipid synthesis through a platform for identifying potential therapeutics for IR and diabetes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gerardo Mata-Torres ◽  
Adolfo Andrade-Cetto ◽  
Fernanda Espinoza-Hernández

Liver plays a pivotal role in maintaining blood glucose levels through complex processes which involve the disposal, storage, and endogenous production of this carbohydrate. Insulin is the hormone responsible for regulating hepatic glucose production and glucose storage as glycogen, thus abnormalities in its function lead to hyperglycemia in obese or diabetic patients because of higher production rates and lower capacity to store glucose. In this context, two different but complementary therapeutic approaches can be highlighted to avoid the hyperglycemia generated by the hepatic insulin resistance: 1) enhancing insulin function by inhibiting the protein tyrosine phosphatase 1B, one of the main enzymes that disrupt the insulin signal, and 2) direct regulation of key enzymes involved in hepatic glucose production and glycogen synthesis/breakdown. It is recognized that medicinal plants are a valuable source of molecules with special properties and a wide range of scaffolds that can improve hepatic glucose metabolism. Some molecules, especially phenolic compounds and terpenoids, exhibit a powerful inhibitory capacity on protein tyrosine phosphatase 1B and decrease the expression or activity of the key enzymes involved in the gluconeogenic pathway, such as phosphoenolpyruvate carboxykinase or glucose 6-phosphatase. This review shed light on the progress made in the past 7 years in medicinal plants capable of improving hepatic glucose homeostasis through the two proposed approaches. We suggest that Coreopsis tinctoria, Lithocarpus polystachyus, and Panax ginseng can be good candidates for developing herbal medicines or phytomedicines that target inhibition of hepatic glucose output as they can modulate the activity of PTP-1B, the expression of gluconeogenic enzymes, and the glycogen content.


2021 ◽  
Vol 9 ◽  
Author(s):  
Fu-Run Wang ◽  
Li Yang ◽  
Fan-Dong Kong ◽  
Qing-Yun Ma ◽  
Qing-Yi Xie ◽  
...  

Three new humulane-type sesquiterpenoids, penirolide A (1), penirolide B (2), and 10-acetyl-phomanoxide (3), together with three known compounds aurasperone A (4), pughiinin A (5), and cyclo(l-Leu-l-Phe) (6) were isolated from the endophytic fungus Penicillium sp. derived from the leaves of Carica papaya L. Their structures including their absolute configurations were determined based on the analysis of NMR and HRESIMS spectra, NMR chemical shifts, and ECD calculations. Compounds 2, 3, 5, and 6 significantly inhibited glucagon-induced hepatic glucose production, with EC50 values of 33.3, 36.1, 18.8, and 32.1 μM, respectively. Further study revealed that compounds 2, 3, 5, and 6 inhibited hepatic glucose production by suppression of glucagon-induced cAMP accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Cao ◽  
Qian Chen ◽  
BiKui Zhang ◽  
XiangXin Wu ◽  
CuiRong Zeng ◽  
...  

Newly emerging evidence has implicated that progesterone receptor component 1 (PGRMC1) plays a novel role not only in the lipid disturbance induced by atypical antipsychotic drugs (AAPD) but also in the deterioration of glucose homoeostasis induced by clozapine (CLZ) treatment. The present study aimed to investigate the role of PGRMC1 signaling on hepatic gluconeogenesis and glycogenesis in male rats following CLZ treatment (20 mg/kg daily for 4 weeks). Recombinant adeno-associated viruses (AAV) were constructed for the knockdown or overexpression of hepatic PGRMC1. Meanwhile, AG205, the specific inhibitor of PGRMC1 was also used for functional validation of PGRMC1. Hepatic protein expressions were measured by western blotting. Meanwhile, plasma glucose, insulin and glucagon, HbA1c and hepatic glycogen were also determined by assay kits. Additionally, concentrations of progesterone (PROG) in plasma, liver and adrenal gland were measured by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Our study demonstrated that CLZ promoted the process of gluconeogenesis and repressed glycogenesis, respectively mediated by PI3K-Akt-FOXO1 and GSK3β signaling via inhibition of PGRMC1-EGFR/GLP1R in rat liver, along with an increase in fasting blood glucose, HbA1c levels and a decrease in insulin and hepatic glycogen levels. Furthermore, through PGRMC1-EGFR/GLP1R-PI3K-Akt pathway, knockdown or inhibition (by AG205) of PGRMC1 mimics, whereas its overexpression moderately alleviates CLZ-induced glucose disturbances. Potentially, the PGRMC1 target may be regarded as a novel therapeutic strategy for AAPD-induced hepatic glucose metabolism disorder.


2021 ◽  
Author(s):  
Liheng Wang ◽  
Junjie Yu ◽  
Qiuzhong Zhou ◽  
Xiaobo Wang ◽  
Maria Mukhanova ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Aalap Verma ◽  
Alexandra Manchel ◽  
Rahul Narayanan ◽  
Jan B. Hoek ◽  
Babatunde A. Ogunnaike ◽  
...  

Rapid breakdown of hepatic glycogen stores into glucose plays an important role during intense physical exercise to maintain systemic euglycemia. Hepatic glycogenolysis is governed by several different liver-intrinsic and systemic factors such as hepatic zonation, circulating catecholamines, hepatocellular calcium signaling, hepatic neuroanatomy, and the central nervous system (CNS). Of the factors regulating hepatic glycogenolysis, the extent of lobular innervation varies significantly between humans and rodents. While rodents display very few autonomic nerve terminals in the liver, nearly every hepatic layer in the human liver receives neural input. In the present study, we developed a multi-scale, multi-organ model of hepatic metabolism incorporating liver zonation, lobular scale calcium signaling, hepatic innervation, and direct and peripheral organ-mediated communication between the liver and the CNS. We evaluated the effect of each of these governing factors on the total hepatic glucose output and zonal glycogenolytic patterns within liver lobules during simulated physical exercise. Our simulations revealed that direct neuronal stimulation of the liver and an increase in circulating catecholamines increases hepatic glucose output mediated by mobilization of intracellular calcium stores and lobular scale calcium waves. Comparing simulated glycogenolysis between human-like and rodent-like hepatic innervation patterns (extensive vs. minimal) suggested that propagation of calcium transients across liver lobules acts as a compensatory mechanism to improve hepatic glucose output in sparsely innervated livers. Interestingly, our simulations suggested that catecholamine-driven glycogenolysis is reduced under portal hypertension. However, increased innervation coupled with strong intercellular communication can improve the total hepatic glucose output under portal hypertension. In summary, our modeling and simulation study reveals a complex interplay of intercellular and multi-organ interactions that can lead to differing calcium dynamics and spatial distributions of glycogenolysis at the lobular scale in the liver.


2021 ◽  
pp. 207-236 ◽  
Author(s):  
Xinyu Li ◽  
Tao Han ◽  
Shixuan Zheng ◽  
Guoyao Wu

Sign in / Sign up

Export Citation Format

Share Document