Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes

Diabetes ◽  
1998 ◽  
Vol 47 (3) ◽  
pp. 498-504 ◽  
Author(s):  
S. M. Abdel-Halim ◽  
A. Guenifi ◽  
B. He ◽  
B. Yang ◽  
M. Mustafa ◽  
...  
2019 ◽  
Vol 317 (2) ◽  
pp. R356-R368 ◽  
Author(s):  
Matthew T. Lewis ◽  
Jonathan D. Kasper ◽  
Jason N. Bazil ◽  
Jefferson C. Frisbee ◽  
Robert W. Wiseman

Type 2 diabetes (T2D) presents with hyperglycemia and insulin resistance, affecting over 30 million people in the United States alone. Previous work has hypothesized that mitochondria are dysfunctional in T2D and results in both reduced ATP production and glucose disposal. However, a direct link between mitochondrial function and T2D has not been determined. In the current study, the Goto-Kakizaki (GK) rat model of T2D was used to quantify mitochondrial function in vitro and in vivo over a broad range of contraction-induced metabolic workloads. During high-frequency sciatic nerve stimulation, hindlimb muscle contractions at 2- and 4-Hz intensities, the GK rat failed to maintain similar bioenergetic steady states to Wistar control (WC) rats measured by phosphorus magnetic resonance spectroscopy, despite similar force production. Differences were not due to changes in mitochondrial content in red (RG) or white gastrocnemius (WG) muscles (cytochrome c oxidase, RG: 22.2 ± 1.6 vs. 23.3 ± 1.7 U/g wet wt; WG: 10.8 ± 1.1 vs. 12.1 ± 0.9 U/g wet wt; GK vs. WC, respectively). Mitochondria isolated from muscles of GK and WC rats also showed no difference in mitochondrial ATP production capacity in vitro, measured by high-resolution respirometry. At lower intensities (0.25–1 Hz) there were no detectable differences between GK and WC rats in sustained energy balance. There were similar phosphocreatine concentrations during steady-state contraction and postcontractile recovery (τ = 72 ± 6 s GK versus 71 ± 2 s WC). Taken together, these results suggest that deficiencies in skeletal muscle energetics seen at higher intensities are not due to mitochondrial dysfunction in the GK rat.


Diabetes ◽  
2002 ◽  
Vol 51 (2) ◽  
pp. 392-397 ◽  
Author(s):  
P. Serradas ◽  
L. Goya ◽  
M. Lacorne ◽  
M.-N. Gangnerau ◽  
S. Ramos ◽  
...  

Diabetes ◽  
2001 ◽  
Vol 50 (Supplement 1) ◽  
pp. S84-S88 ◽  
Author(s):  
F. Miralles ◽  
B. Portha

2007 ◽  
Vol 9 (s2) ◽  
pp. 187-195 ◽  
Author(s):  
J. Movassat ◽  
S. Calderari ◽  
E. Fernández ◽  
M. A. Martín ◽  
F. Escrivá ◽  
...  
Keyword(s):  

2005 ◽  
Vol 173 (4S) ◽  
pp. 283-284
Author(s):  
Istvan Kovanecz ◽  
Monica G. Ferrini ◽  
Hugo H. Davila ◽  
Jacob Rajfer ◽  
Nestor F. Gonzalez-Cadavid
Keyword(s):  

2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199759
Author(s):  
Jiajia Tian ◽  
Yanyan Zhao ◽  
Lingling Wang ◽  
Lin Li

Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling pathway in the heart and liver in a rat model of type 2 diabetes mellitus (T2DM). Our overall goal was to understand the underlying pathophysiological mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as well as downstream cytokines was investigated. Levels of mRNA and protein were assessed using quantitative real-time polymerase chain reaction and western blotting, respectively. Protein content of tissue homogenates was assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher intraperitoneal glucose tolerance than normal rats. In addition, biochemical indicators related to heart and liver function were elevated in diabetic rats compared with normal rats. TLR4 and MyD88 were involved in the occurrence of T2DM as well as T2DM-related heart and liver complications. TLR4 caused T2DM-related heart and liver complications through activation of NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1, leading to the heart- and liver-related complications of T2DM.


2015 ◽  
Vol 60 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Raziye Akcılar ◽  
Sebahat Turgut ◽  
Vildan Caner ◽  
Aydın Akcılar ◽  
Ceylan Ayada ◽  
...  
Keyword(s):  

Diabetologia ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 2451-2462 ◽  
Author(s):  
M-H. Giroix ◽  
J-C. Irminger ◽  
G. Lacraz ◽  
C. Noll ◽  
S. Calderari ◽  
...  
Keyword(s):  

2016 ◽  
Vol 62 (6) ◽  
pp. 416-424
Author(s):  
Kazuhiro KUBO ◽  
Ayano KOIDO ◽  
Misako KITANO ◽  
Hirotaka YAMAMOTO ◽  
Morio SAITO

Sign in / Sign up

Export Citation Format

Share Document