scholarly journals Lysosomal acid lipase drives adipocyte cholesterol homeostasis and modulates lipid storage in obesity, independent of autophagy

2020 ◽  
Author(s):  
Ada Admin ◽  
Camille Gamblin ◽  
Christine Rouault ◽  
Amélie Lacombe ◽  
Francina Langa-Vives ◽  
...  

Besides cytoplasmic lipase-dependent adipocyte fat mobilization, the metabolic role of lysosomal acid lipase (LAL), highly expressed in adipocytes is unclear. We show that the isolated adipocyte fraction but not the total undigested adipose tissue from obese patients has decreased LAL expression compared to non-obese. Lentiviral-mediated LAL knockdown in 3T3L1 to mimic obese adipocytes condition did not affect lysosome density or autophagic flux, but increased triglyceride storage and disrupted ER cholesterol as indicated by activated SREBP. Conversely, mice with adipose-specific LAL overexpression (Adpn-rtTA x TetO-hLAL) gained less weight and body fat than controls on a high fat diet, resulting in ameliorated glucose tolerance. Blood cholesterol was lower than controls albeit similar triglyceridemia. Adipose-LAL overexpressing mice phenotype is dependent on the housing temperature, and develops only under mild hypothermic stress (room temperature) but not at thermoneutrality (30°C), demonstrating prominent contribution of BAT thermogenesis. LAL overexpression increased BAT free cholesterol, decreased SREBP targets, and induced the expression of genes involved in initial steps of mitochondrial steroidogenesis, suggesting conversion of lysosome-derived cholesterol to pregnenolone. In conclusion, our study demonstrates that adipose LAL drives tissue cholesterol homeostasis and impacts BAT metabolism, suggesting beneficial LAL activation in anti-obesity approaches aimed at reactivating thermogenic energy expenditure.

2020 ◽  
Author(s):  
Ada Admin ◽  
Camille Gamblin ◽  
Christine Rouault ◽  
Amélie Lacombe ◽  
Francina Langa-Vives ◽  
...  

Besides cytoplasmic lipase-dependent adipocyte fat mobilization, the metabolic role of lysosomal acid lipase (LAL), highly expressed in adipocytes is unclear. We show that the isolated adipocyte fraction but not the total undigested adipose tissue from obese patients has decreased LAL expression compared to non-obese. Lentiviral-mediated LAL knockdown in 3T3L1 to mimic obese adipocytes condition did not affect lysosome density or autophagic flux, but increased triglyceride storage and disrupted ER cholesterol as indicated by activated SREBP. Conversely, mice with adipose-specific LAL overexpression (Adpn-rtTA x TetO-hLAL) gained less weight and body fat than controls on a high fat diet, resulting in ameliorated glucose tolerance. Blood cholesterol was lower than controls albeit similar triglyceridemia. Adipose-LAL overexpressing mice phenotype is dependent on the housing temperature, and develops only under mild hypothermic stress (room temperature) but not at thermoneutrality (30°C), demonstrating prominent contribution of BAT thermogenesis. LAL overexpression increased BAT free cholesterol, decreased SREBP targets, and induced the expression of genes involved in initial steps of mitochondrial steroidogenesis, suggesting conversion of lysosome-derived cholesterol to pregnenolone. In conclusion, our study demonstrates that adipose LAL drives tissue cholesterol homeostasis and impacts BAT metabolism, suggesting beneficial LAL activation in anti-obesity approaches aimed at reactivating thermogenic energy expenditure.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2619
Author(s):  
Vinay Sachdev ◽  
Madalina Duta-Mare ◽  
Melanie Korbelius ◽  
Nemanja Vujić ◽  
Christina Leopold ◽  
...  

Lysosomal acid lipase (LAL) is the sole enzyme known to be responsible for the hydrolysis of cholesteryl esters and triglycerides at an acidic pH in lysosomes, resulting in the release of unesterified cholesterol and free fatty acids. However, the role of LAL in diet-induced adaptations is largely unexplored. In this study, we demonstrate that feeding a Western-type diet to Lal-deficient (LAL-KO) mice triggers metabolic reprogramming that modulates gut-liver cholesterol homeostasis. Induction of ileal fibroblast growth factor 15 (three-fold), absence of hepatic cholesterol 7α-hydroxylase expression, and activation of the ERK phosphorylation cascade results in altered bile acid composition, substantial changes in the gut microbiome, reduced nutrient absorption by 40%, and two-fold increased fecal lipid excretion in LAL-KO mice. These metabolic adaptations lead to impaired bile acid synthesis, lipoprotein uptake, and cholesterol absorption and ultimately to the resistance of LAL-KO mice to diet-induced obesity. Our results indicate that LAL-derived lipolytic products might be important metabolic effectors in the maintenance of whole-body lipid homeostasis.


Diabetes ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 76-90
Author(s):  
Camille Gamblin ◽  
Christine Rouault ◽  
Amélie Lacombe ◽  
Francina Langa-Vives ◽  
Dominique Farabos ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Suresh Vijay ◽  
Anais Brassier ◽  
Arunabha Ghosh ◽  
Simona Fecarotta ◽  
Florian Abel ◽  
...  

Abstract Background If symptomatic in infants, the autosomal recessive disease lysosomal acid lipase deficiency (LAL-D; sometimes called Wolman disease or LAL-D/Wolman phenotype) is characterized by complete loss of LAL enzyme activity. This very rare, rapidly progressive form of LAL-D results in severe manifestations leading to failure to thrive and death, usually by 6 months of age. We report results from 2 open-label studies of enzyme replacement therapy with sebelipase alfa, a recombinant human LAL, in infants with LAL-D: the phase 2/3 Survival of LAL-D Infants Treated With Sebelipase Alfa (VITAL) study (NCT01371825) and a phase 2 dose-escalation study (LAL-CL08 [CL08]; NCT02193867). In both, infants received once-weekly intravenous infusions of sebelipase alfa. Results The analysis population contained 19 patients (9 in VITAL; 10 in CL08). Kaplan–Meier estimates of survival to 12 months and 5 years of age were 79% and 68%, respectively, in the combined population, and the median age of surviving patients was 5.2 years in VITAL and 3.2 years in CL08. In both studies, median weight-for-age, length-for-age, and mid-upper arm circumference-for-age z scores increased from baseline to end of study. Decreases in median liver and spleen volume over time were noted in both studies. Short-term transfusion-free hemoglobin normalization was achieved by 100% of patients eligible for assessment in VITAL, in an estimated median (95% confidence interval [CI]) time of 4.6 (0.3–16.6) months. In CL08, short-term transfusion-free hemoglobin normalization was achieved by 70% of patients eligible for assessment, in an estimated median (95% CI) time of 5.5 (3.7–19.6) months. No patient discontinued treatment because of treatment-emergent adverse events. Most infusion-associated reactions (94% in VITAL and 88% in CL08) were mild or moderate in severity. Conclusions The findings of these 2 studies of infants with rapidly progressive LAL-D demonstrated that enzyme replacement therapy with sebelipase alfa prolonged survival with normal psychomotor development, improved growth, hematologic parameters, and liver parameters, and was generally well tolerated, with an acceptable safety profile.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Suresh Vijay ◽  
Anais Brassier ◽  
Arunabha Ghosh ◽  
Simona Fecarotta ◽  
Florian Abel ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document