bile acid metabolism
Recently Published Documents


TOTAL DOCUMENTS

890
(FIVE YEARS 280)

H-INDEX

58
(FIVE YEARS 12)

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 205
Author(s):  
Di Wu ◽  
Mingjuan Gu ◽  
Zhuying Wei ◽  
Chunling Bai ◽  
Guanghua Su ◽  
...  

Myostatin (MSTN) is a major negative regulator of skeletal muscle mass and causes a variety of metabolic changes. However, the effect of MSTN knockout on bile acid metabolism has rarely been reported. In this study, the physiological and biochemical alterations of serum in MSTN+/− and wild type (WT) cattle were investigated. There were no significant changes in liver and kidney biochemical indexes. However, compared with the WT cattle, lactate dehydrogenase, total bile acid (TBA), cholesterol, and high-density lipoprotein (HDL) in the MSTN+/− cattle were significantly increased, and glucose, low-density lipoprotein (LDL), and triglycerides (TG) were significantly decreased, indicating that MSTN knockout affected glucose and lipid metabolism and total bile acids content. Targeted metabolomic analysis of the bile acids and their derivatives was performed on serum samples and found that bile acids were significantly increased in the MSTN+/− cattle compared with the WT cattle. As the only bile acid synthesis organ in the body, we performed metabolomic analysis on the liver to study the effect of MSTN knockout on hepatic metabolism. Metabolic pathway enrichment analysis of differential metabolites showed significant enrichment of the primary bile acid biosynthesis and bile secretion pathway in the MSTN+/− cattle. Targeted metabolomics data further showed that MSTN knockout significantly increased bile acid content in the liver, which may have resulted from enhanced bile acid synthesis due to the expression of bile acid synthesis genes, cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1), and upregulation in the liver of the MSTN+/− cattle. These results indicate that MSTN knockout does not adversely affect bovine fitness but regulates bile acid metabolism via enhanced bile acid synthesis. This further suggests a role of MSTN in regulating metabolism.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yujie Zhu ◽  
Shucheng Liu ◽  
Fengfeng Mei ◽  
Meihui Zhao ◽  
Guanghua Xia ◽  
...  

Osteoporosis is a global health problem, and it is of great significance to replace the drugs with natural functional factors. In this study, we investigated the antiosteoporotic activity of lipids prepared from Tilapia nilotica fish head lipids (THLs) in the ovariectomized osteoporosis rats. THLs are composed of neutral lipids (NL, 77.84%), phospholipids (PL, 11.86%), and glycolipids (GL, 6.47%). There were apparent differences in the fatty acid composition of disparate components, and PL contains the most abundant Ω-3 polyunsaturated fatty acids. The results proved that THLs could improve bone microstructure, increase bone mineral density, and decrease bone resorption. To illustrate the antiosteoporotic mechanism, we analyzed the changes in gut microbial communities, proinflammation factors, serum metabolites, and metabolic pathways. Further study on gut microbiota showed that THLs significantly decreased the content of Alistipes in the gut and dramatically increased the beneficial bacteria such as Oscillospira, Roseburia, and Dubosiella. Meanwhile, proinflammation factors of serum in OVX rats decreased significantly, and metabolites were changed. Therefore, we speculated that THLs improved bone loss through reducing inflammation and changing the metabolites and metabolic pathways such as arachidonic acid metabolism and primary bile acid metabolism, etc., by altering gut microbiota. The results indicated that THLs could be a functional factor with antiosteoporotic activity.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Laura M. de Jong ◽  
Zhengzheng Zhang ◽  
Yvette den Hartog ◽  
Timothy J. P. Sijsenaar ◽  
Renata Martins Cardoso ◽  
...  

AbstractProtein arginine methyltransferase 3 (PRMT3) is a co-activator of liver X receptor capable of selectively modulating hepatic triglyceride synthesis. Here we investigated whether pharmacological PRMT3 inhibition can diminish the hepatic steatosis extent and lower plasma lipid levels and atherosclerosis susceptibility. Hereto, male hyperlipidemic low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet and injected 3 times per week intraperitoneally with PRMT3 inhibitor SGC707 or solvent control. Three weeks into the study, SGC707-treated mice developed severe pruritus and scratching-associated skin lesions, leading to early study termination. SGC707-treated mice exhibited 50% lower liver triglyceride stores as well as 32% lower plasma triglyceride levels. Atherosclerotic lesions were virtually absent in all experimental mice. Plasma metabolite analysis revealed that levels of taurine-conjugated bile acids were ~ threefold increased (P < 0.001) in response to SGC707 treatment, which was paralleled by systemically higher bile acid receptor TGR5 signalling. In conclusion, we have shown that SGC707 treatment reduces hepatic steatosis and plasma triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. These findings suggest that pharmacological PRMT3 inhibition can serve as therapeutic approach to treat non-alcoholic fatty liver disease and dyslipidemia/atherosclerosis, when unwanted effects on cholesterol and bile acid metabolism can be effectively tackled.


Gut ◽  
2022 ◽  
pp. gutjnl-2021-324295
Author(s):  
Meritxell Ventura-Cots ◽  
Josepmaria Argemi ◽  
Patricia D Jones ◽  
Carolin Lackner ◽  
Mohamed El Hag ◽  
...  

ObjectiveAlcohol-related liver disease (ALD) ranges from never-decompensated ALD (ndALD) to the life-threatening decompensated phenotype, known as alcohol-related hepatitis (AH). A multidimensional study of the clinical, histological and molecular features of these subtypes is lacking.DesignTwo large cohorts of patients were recruited in an international, observational multicentre study: a retrospective cohort of patients with ndALD (n=110) and a prospective cohort of patients with AH (n=225). Clinical, analytical, immunohistochemistry and hepatic RNA microarray analysis of both disease phenotypes were performed.ResultsAge and mean alcohol intake were similar in both groups. AH patients had greater aspartate amino transferase/alanine amino transferase ratio and lower gamma-glutamyl transferase levels than in ndALD patients. Patients with AH demonstrated profound liver failure and increased mortality. One-year mortality was 10% in ndALD and 50% in AH. Histologically, steatosis grade, ballooning and pericellular fibrosis were similar in both groups, while advanced fibrosis, Mallory-Denk bodies, bilirubinostasis, severe neutrophil infiltration and ductular reaction were more frequent among AH patients. Transcriptome analysis revealed a profound gene dysregulation within both phenotypes when compare to controls. While ndALD was characterised by deregulated expression of genes involved in matrisome and immune response, the development of AH resulted in a marked deregulation of genes involved in hepatocyte reprogramming and bile acid metabolism.ConclusionsDespite comparable alcohol intake, AH patients presented with worse liver function compared with ndALD patients. Bilirubinostasis, severe fibrosis and ductular reaction were prominent features of AH. AH patients exhibited a more profound deregulation of gene expression compared with ndALD patients.


Phytomedicine ◽  
2022 ◽  
pp. 153931
Author(s):  
Shitao Peng ◽  
Zhiqian Song ◽  
Chun Wang ◽  
Dongrui Liang ◽  
Xiaoying Wan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Boyan Zhang ◽  
Folkert Kuipers ◽  
Jan Freark de de Boer ◽  
Jan Albert Kuivenhoven

New drugs targeting bile acid metabolism are currently being evaluated in clinical studies for their potential to treat cholestatic liver diseases, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Changes in bile acid metabolism, however, translate into an alteration of plasma cholesterol and triglyceride concentrations, which may also affect cardiovascular outcomes in such patients. This review attempts to gain insight into this matter and improve our understanding of the interactions between bile acid and lipid metabolism. Bile acid sequestrants (BAS), which bind bile acids in the intestine and promote their faecal excretion, have long been used in the clinic to reduce LDL cholesterol and, thereby, atherosclerotic cardiovascular disease (ASCVD) risk. However, BAS modestly but consistently increase plasma triglycerides, which is considered a causal risk factor for ASCVD. Like BAS, inhibitors of the apical sodium-dependent bile acid transporter (ASBTi’s) reduce intestinal bile acid absorption. ASBTi’s show effects that are quite similar to those obtained with BAS, which is anticipated when considering that accelerated faecal loss of bile acids is compensated by an increased hepatic synthesis of bile acids from cholesterol. Oppositely, treatment with farnesoid X receptor agonists, resulting in inhibition of bile acid synthesis, appears to be associated with increased LDL cholesterol. In conclusion, the increasing efforts to employ drugs that intervene in bile acid metabolism and signalling pathways for the treatment of metabolic diseases such as NAFLD warrants reinforcing interactions between the bile acid and lipid and lipoprotein research fields. This review may be considered as the first step in this process.


Antioxidants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2001
Author(s):  
María Juárez-Fernández ◽  
David Porras ◽  
Petar Petrov ◽  
Sara Román-Sagüillo ◽  
María Victoria García-Mediavilla ◽  
...  

Gut microbiota plays a key role in obesity and non-alcoholic fatty liver disease (NAFLD), so synbiotics could be a therapeutic alternative. We aim to evaluate a nutritional intervention together with the administration of the bacteria Akkermansia muciniphila and the antioxidant quercetin in an in vivo model of early obesity and NAFLD. 21-day-old rats were fed with control or high-fat diet for six weeks. Then, all animals received control diet supplemented with/without quercetin and/or A. muciniphila for three weeks. Gut microbiota, NAFLD-related parameters, circulating bile acids (BAs) and liver gene expression were analyzed. The colonization with A. muciniphila was associated with less body fat, while synbiotic treatment caused a steatosis remission, linked to hepatic lipogenesis modulation. The synbiotic promoted higher abundance of Cyanobacteria and Oscillospira, and lower levels of Actinobacteria, Lactococcus, Lactobacillus and Roseburia. Moreover, it favored elevated unconjugated hydrophilic BAs plasma levels and enhanced hepatic expression of BA synthesis and transport genes. A. muciniphila correlated with circulating BAs and liver lipid and BA metabolism genes, suggesting a role of this bacterium in BA signaling. Beneficial effects of A. muciniphila and quercetin combination are driven by gut microbiota modulation, the shift in BAs and the gut-liver bile flow enhancement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-wen Zhao ◽  
Meng Xiao ◽  
Xia Wu ◽  
Xiu-wei Li ◽  
Xiao-xi Li ◽  
...  

Bile acid (BA) metabolism is an attractive therapeutic target in nonalcoholic fatty liver disease (NAFLD). We aimed to investigate the effect of ilexsaponin A1 (IsA), a major bioactive ingredient of Ilex, on high-fat diet (HFD)-induced NAFLD in mice with a focus on BA homeostasis. Male C57BL/6J mice were fed an HFD to induce NAFLD and were treated with IsA (120 mg/kg) for 8 weeks. The results showed that administration of IsA significantly decreased serum total cholesterol (TC), attenuated liver steatosis, and decreased total hepatic BA levels in HFD-induced NAFLD mice. IsA-treated mice showed increased BA synthesis in the alternative pathway by upregulating the gene expression levels of sterol 27-hydroxylase (CYP27A1) and cholesterol 7b-hydroxylase (CYP7B1). IsA treatment accelerated efflux and decreased uptake of BA in liver by increasing hepatic farnesoid X receptor (FXR) and bile salt export pump (BSEP) expression, and reducing Na+-taurocholic acid cotransporting polypeptide (NTCP) expression. Alterations in the gut microbiota and increased bile salt hydrolase (BSH) activity might be related to enhanced fecal BA excretion in IsA-treated mice. This study demonstrates that consumption of IsA may prevent HFD-induced NAFLD and exert cholesterol-lowering effects, possibly by regulating the gut microbiota and BA metabolism.


2021 ◽  
Vol 28 ◽  
Author(s):  
Antonis A. Manolis ◽  
Theodora A. Manolis ◽  
Helen Melita ◽  
Antonis S. Manolis

: The gut microbiome interacts with host physiology through various mechanisms, including the cardiovascular (CV) system. A healthy microbiome has the ability to process and digest complex carbohydrates into short-chain fatty acids (SCFA). These SCFA function as signaling molecules, immune-modulating molecules, and energy sources. However, when the microbiome is altered, it produces gut dysbiosis with overgrowth of certain bacteria that may lead to overproduction of trimethylamine-N-oxide (TMAO) from the metabolism of phosphatidylcholine, choline, and carnitine; dysbiosis also leads to increased intestinal permeability allowing the microbiome-derived lipopolysaccharide (LPS), a bacterial endotoxin, to enter the blood circulation triggering inflammatory responses. An altered GI tract environment and microbiome-derived metabolites are associated with CV events. Disrupted content and function of the microbiome leading to elevated TMAO and LPS levels, altered bile acid metabolism pathways and SCFA production, is associated with an increased risk of CV diseases (CVD), including atherosclerosis, myocardial infarction, thrombosis, arrhythmias and stroke. Therapeutic interventions that may favorably influence a dysbiotic GI tract profile and promote a healthy microbiome may benefit the CV system and lead to a reduction of CVD incidence in certain situations. These issues are herein reviewed with a focus on the spectrum of microbiota-related CVD, the mechanisms involved and the potential use of microbiome modification as a possible therapeutic intervention.


Sign in / Sign up

Export Citation Format

Share Document