scholarly journals Computer aided manufacturing supported process planning of additive manufacturing by laser deposition welding

2015 ◽  
Vol 27 (S1) ◽  
pp. S14002 ◽  
Author(s):  
Kristian Arntz ◽  
Maximilian Wegener ◽  
Yuan Liu
Author(s):  
Sean Peel ◽  
Satyajeet Bhatia ◽  
Dominic Eggbeer ◽  
Daniel S Morris ◽  
Caroline Hayhurst

Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge – that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies – on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.


2015 ◽  
Vol 105 (06) ◽  
pp. 410-414
Author(s):  
N. Klingbeil ◽  
M. Schulz

Generative Fertigungsverfahren erlauben komplexe, individualisierte und anwendungsgerechte Geometrien. Mit Technologien wie dem drahtbasierten Laserauftragschweißen ist es darüber hinaus möglich, ressourceneffizient zu fertigen. So können etwa durch das Auftragen von Schichten auf einen Grundkörper Rohkonturen von Verdichterschaufeln im Turbomaschinenbau hergestellt werden. Dies ersetzt, im Vergleich zur herkömmlichen abtragenden Fertigung, den Schruppprozess und gestattet eine signifikante Kosteneinsparung. Dieser Ansatz wird hier im Rahmen der Fertigung und metallographischen Untersuchung eines Demonstrators beschrieben.   Additive manufacturing allows for complex, individualized and customized geometries. With technologies such as wire-based laser deposition welding, it is also possible to make production more resource-efficient. For instance, this technology helps to produce rough geometries of compressor blades for turbo machinery by depositing layers on a substrate. It substitutes conventional roughing strategies by milling and enables a significant cost reduction. This paper describes the new manufacturing technique in the context of metallographic examination using a demonstrator.


Author(s):  
Xun Xu

Products and their components are designed to perform certain functions. Design specifi- cations ensure the functionality aspects. The task in manufacturing is then to produce the components that meet the design specifications. The components are in turn assembled into the final products. When computers are used to assist the process planning and manufacturing activities, multiple benefits can be had. The related technologies are known as computer-aided process planning and computer-aided manufacturing. Often, they are not separable and are therefore discussed in tandem in this chapter. It should be emphasized that process planning is not only for metal-cutting processes. We need process planning for many other manufacturing processes such as casting, forging, sheet metal forming, compositesz and ceramic fabrication. In this chapter, the basic steps of developing a process plan are explained. There are two approaches to carrying out process planning tasks—manual experience-based method and computer-aided process planning method. The focus is on two computer-aided process planning methods, the variant approach, and generative approach. These discussions on process planning have been limited to machining processes. The topic of computer-aided manufacturing, on the other hand, is discussed with a more general point of view. A fictitious CAM plant is presented and some of the key aspects of CAM in a manufacturing system are discussed. A more specific version of CAM (i.e. computer numerical control) will be covered in Chapters VIII and IX.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jaafar Abduo ◽  
Karl Lyons ◽  
Mohammed Bennamoun

In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses.


1983 ◽  
Author(s):  
R. Heine ◽  
R. Prewett ◽  
S. Coleman ◽  
L. Beebe ◽  
B. Davis

Sign in / Sign up

Export Citation Format

Share Document