scholarly journals Trends in Computer-Aided Manufacturing in Prosthodontics: A Review of the Available Streams

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jaafar Abduo ◽  
Karl Lyons ◽  
Mohammed Bennamoun

In prosthodontics, conventional methods of fabrication of oral and facial prostheses have been considered the gold standard for many years. The development of computer-aided manufacturing and the medical application of this industrial technology have provided an alternative way of fabricating oral and facial prostheses. This narrative review aims to evaluate the different streams of computer-aided manufacturing in prosthodontics. To date, there are two streams: the subtractive and the additive approaches. The differences reside in the processing protocols, materials used, and their respective accuracy. In general, there is a tendency for the subtractive method to provide more homogeneous objects with acceptable accuracy that may be more suitable for the production of intraoral prostheses where high occlusal forces are anticipated. Additive manufacturing methods have the ability to produce large workpieces with significant surface variation and competitive accuracy. Such advantages make them ideal for the fabrication of facial prostheses.

2019 ◽  
Vol 09 (02) ◽  
pp. 57-63
Author(s):  
Sushmita V. Palanisamy ◽  
Chethan Hegde

Abstract Background Contemporary dentistry is advancing toward computer-aided design/ computer-aided manufacturing (CAD/CAM) technology. But the budding dentists are unaware about the advancement. This survey aims at detecting the level of awareness among the undergraduate students and then correlating those results to modify the future curriculum. Objective The study aims (1) to assess the awareness among the dental undergraduate students and (2) to correlate the level of awareness among the third years, final years, and interns. Sample Selection Study sample consist of 300 students (third year students, final year students, and interns) of A. B. Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India. The information of the survey was collected with the help of a questionnaire. Results More than 70% of the students were aware about the basic functioning of CAD/CAM unit and approximately 74% of the students were unaware about the materials used to fabricate the prosthesis using CAD/CAM technology.


2016 ◽  
Vol 87 (1) ◽  
pp. 125-130 ◽  
Author(s):  
Najla Alrejaye ◽  
Richard Pober ◽  
Russell Giordano II

ABSTRACTObjective: To fabricate orthodontic brackets from esthetic materials and determine their fracture resistance during archwire torsion.Materials and Methods: Computer-aided design/computer-aided manufacturing technology (Cerec inLab, Sirona) was used to mill brackets with a 0.018 × 0.025-inch slot. Materials used were Paradigm MZ100 and Lava Ultimate resin composite (3M ESPE), Mark II feldspathic porcelain (Vita Zahnfabrik), and In-Ceram YZ zirconia (Vita Zahnfabrik). Ten brackets of each material were subjected to torque by a 0.018 × 0.025-inch stainless steel archwire (G&H) using a specially designed apparatus. The average moments and degrees of torsion necessary to fracture the brackets were determined and compared with those of commercially available alumina brackets, Mystique MB (Dentsply GAC).Results: The YZ brackets were statistically significantly stronger than any other tested material in their resistance to torsion (P < .05). The mean torques at failure ranged from 3467 g.mm for Mark II to 11,902 g.mm for YZ. The mean torsion angles at failure ranged from 15.3° to 40.9°.Conclusion: Zirconia had the highest torsional strength among the tested esthetic brackets. Resistance of MZ100 and Lava Ultimate composite resin brackets to archwire torsion was comparable to commercially available alumina ceramic brackets.


Author(s):  
Sean Peel ◽  
Satyajeet Bhatia ◽  
Dominic Eggbeer ◽  
Daniel S Morris ◽  
Caroline Hayhurst

Previously published evidence has established major clinical benefits from using computer-aided design, computer-aided manufacturing, and additive manufacturing to produce patient-specific devices. These include cutting guides, drilling guides, positioning guides, and implants. However, custom devices produced using these methods are still not in routine use, particularly by the UK National Health Service. Oft-cited reasons for this slow uptake include the following: a higher up-front cost than conventionally fabricated devices, material-choice uncertainty, and a lack of long-term follow-up due to their relatively recent introduction. This article identifies a further gap in current knowledge – that of design rules, or key specification considerations for complex computer-aided design/computer-aided manufacturing/additive manufacturing devices. This research begins to address the gap by combining a detailed review of the literature with first-hand experience of interdisciplinary collaboration on five craniofacial patient case studies. In each patient case, bony lesions in the orbito-temporal region were segmented, excised, and reconstructed in the virtual environment. Three cases translated these digital plans into theatre via polymer surgical guides. Four cases utilised additive manufacturing to fabricate titanium implants. One implant was machined from polyether ether ketone. From the literature, articles with relevant abstracts were analysed to extract design considerations. In all, 19 frequently recurring design considerations were extracted from previous publications. Nine new design considerations were extracted from the case studies – on the basis of subjective clinical evaluation. These were synthesised to produce a design considerations framework to assist clinicians with prescribing and design engineers with modelling. Promising avenues for further research are proposed.


2018 ◽  
Vol 55 (1) ◽  
pp. 124-128 ◽  
Author(s):  
Claudia Florina Andreescu ◽  
Doina Lucia Ghergic ◽  
Oana Botoaca ◽  
Violeta Hancu ◽  
Andreea Mariana Banateanu ◽  
...  

Utilization of computer-aided design/computer-aided manufacturing (CAD/CAM) rapidly increases in dental medicine. Making of computer-engineered complete denture is based on scanning of patient data, designing of prosthesis and milling or rapid prototyping. This is digital denture, term that includes innovative devices, software programmes and corresponding materials. Industrially polymerized cross-linked polymethyl methacrylate (PMMA) is the material used for fabrication of digital denture. The aim of this study is to analyze the different cross-linked PMMA used for fabrication of CAD/CAM complete denture.


2021 ◽  
Vol 38 (SI-2) ◽  
pp. 119-122
Author(s):  
Necati KALELİ ◽  
Çağrı URAL ◽  
Yurdanur UÇAR

Metal alloys have been used for many years as framework material of dental restorations. The conventional lost-wax and casting method, which was very popular in fabrication of metal frameworks, are now being replaced by computer-aided manufacturing technologies. Computer-aided manufacturing methods offer many advantages, such as standardization and quality in manufacturing, precise fit of restorations, and improved mechanical strength. Digital technologies used in fabrication of metal frameworks are simply classified as subtractive and additive computer-aided manufacturing systems, and each have their own subdivisions, which show differences in the used technology. This review summarizes computer-aided systems used in fabrication of metal frameworks in terms of use in dental practice, advantages, disadvantages and provides clinical recommendations.


2021 ◽  
Vol 5 (1) ◽  
pp. 15-30
Author(s):  
Dorota Laskowska ◽  
Katarzyna Mitura ◽  
Ewa Ziółkowska ◽  
Błażej Bałasz

The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.


2020 ◽  
Vol 979 ◽  
pp. 74-83
Author(s):  
Penumuru Kumar ◽  
Arumugam Mahamani ◽  
B. Durga Prasad

In the present scenario, the industries are looking for creating the model quickly and making the prototype. Additive manufacturing (AM) is a rising technology for a hefty choice of applications. This route has plenty of advantages such as the availability of a wide range of materials, fabrication speed and resolution of the final components. The current paper deals with the review of the recent developments in additive manufacturing methods and their applications. Further, the discussion has been made about the various materials used for additive manufacturing such as ceramic, polymer, composites and biomaterials. The survey denotes that fused deposition modeling has received the widespread attention of the researchers. Finally, some of the gaps in the research are found and reported.


Sign in / Sign up

Export Citation Format

Share Document