Industrial applications of fiber-optic sensor technology

Author(s):  
W. B. Spillman
2013 ◽  
Author(s):  
Li Gao ◽  
Yong Li ◽  
Zhaorui Chu ◽  
Ming Wu ◽  
Nan Lin

2019 ◽  
Vol 8 (2S3) ◽  
pp. 1418-1431

Fiber Optic sensor technology has become more popular since early 1970’s during which the mechanism of losses from optical fibers was exploited to construct a new class of fiber optic sensors and systems. A novel fiber optic sensor has been developed by connecting a U-shaped glass element of specific dimensions between a light source of 660nm wavelength and an optical power detector by using a couple of PCS optical fibers of 200/230μm diameters of core and cladding respectively. The sensor can be employed to measure several parameters such as Refractive Index, Density, Viscosity, Ultrasonic Velocity, Molar Volume, Molar Refraction, Dielectric Constant, Acoustic Impendence, Adiabatic Compressibility, Viscous Relaxation Time, Intermolecular Free Length, Absorption Coefficient, Gibb’s Free Energy, Free Volume, Internal Pressure and their excess parameters of Toluene and tert-Butanol mixtures at 30℃ temperature and at the operating wavelength of 660nm


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5476 ◽  
Author(s):  
Franz J. Dutz ◽  
Andreas Heinrich ◽  
Rolf Bank ◽  
Alexander W. Koch ◽  
Johannes Roths

A low-drift fiber-optic sensor system, consisting of 24 regenerated fiber Bragg gratings (RFBG), equally distributed over a length of 2.3 m, is presented here. The sensor system can monitor spatially extended temperature profiles with a time resolution of 1 Hz at temperatures of up to 500 °C. The system is intended to be used in chemical reactors for both the control of the production ramp-up, where a fast time response is needed, as well as for production surveillance, where low sensor drifts over several years are required. The fiber-optic sensor system was installed in a pilot test reactor and was exposed to a constant temperature profile, with temperatures in the range of 150–500 °C for more than two years. During this period, the temperature profile was measured every three to five months and the fiber-optic temperature data were compared with data from a three-point thermocouple array and a calibrated single-point thermocouple. A very good agreement between all temperature measurements was found. The drift rates of the 24 RFBG sensor elements were determined by comparing the Bragg wavelengths at a precisely defined reference temperature near room temperature before and after the two-year deployment. They were found to be in the range of 0.0 K/a to 2.3 K/a, with an average value of 1.0 K/a. These low drift rates were achieved by a dedicated temperature treatment of the RFBGs during fabrication. Here, the demonstrated robustness, accuracy, and low drift characteristics show the potential of fiber-optic sensors for future industrial applications.


1998 ◽  
Author(s):  
Jiaqi Chen ◽  
Heng Dai ◽  
Desheng Jiang ◽  
Dongya Sun

Author(s):  
Evageline Rivera ◽  
Dimos Polyzois ◽  
Douglas J. Thomson ◽  
Ningguang Xu

The development of a fiber optic sensor system for the long-term monitoring of composite glass fiber-reinforced polymer (GFRP) poles will be presented. There is a growing interest in developing techniques for evaluating and monitoring their structural integrity. In the past few years, fiber optic sensor technology has emerged as a promising alternative to conventional methods of monitoring such as strain gauges. Fiber optic sensors can be attached to or embedded in civil structures such as bridges, dams and buildings. They operate by responding to changes in temperature and strain on the structure. The long gauge fiber optic sensor measures the average strain between two points on a structure. Long gauges are interferometric sensors that involve phase matching two optical paths to create a maximum interference pattern at the photodetector. The strain is calculated using the distance in which the reference arm of the interferometer is moved in order to match the optical path lengths.


2000 ◽  
Vol 82 (1-3) ◽  
pp. 40-61 ◽  
Author(s):  
K.T.V. Grattan ◽  
T. Sun

Sign in / Sign up

Export Citation Format

Share Document