operating wavelength
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 41)

H-INDEX

8
(FIVE YEARS 2)

Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Jacob T. Heiden ◽  
Min Seok Jang

Abstract Controlling the wavefront of light, especially on a subwavelength scale, is pivotal in modern optics. Metasurfaces present a unique platform for realizing flat lenses, called metalenses, with thicknesses on the order of the wavelength. Despite substantial effort, however, suppressing the chromatic aberrations over large operational bandwidths of metalenses still remains a challenge. Here, we develop a systematic design method enabling a simultaneous, polarization-insensitive control of the phase and the group delay of a light beam based on libraries of transmission-mode dielectric meta-elements. Mid-infrared achromatic metalenses are designed and theoretically analyzed to have diffraction-limited focal spots with vanishing chromatic aberrations in the operating wavelength range of 6–8.5 μm, while maintaining high focusing efficiencies of 41% on average. The proposed methodology, which can be used as a general design rule for all spectra, also provides a versatile design scheme for ultrashort pulse focusing and achromatic vortex-beam generation (orbital angular momentum), representing a major advance toward practical implementations of functional metalenses.


Author(s):  
Aleksey Skvorcov

An expression for quasi-analytical calculation of the attenuation coefficient, due to losses in metal walls of a lunar waveguide with homogeneous dielectric filling is obtained. The results of quasi-analytical calculation of the attenuation coefficient in metal walls of hollow lunar waveguide at different values of its geometrical sizes and operating wavelength, which can be useful in synthesis of microwave devices for various applications, based on the considered guide system, are represented.


2021 ◽  
Vol 7 (4) ◽  
pp. 99-103
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


2021 ◽  
Vol 7 (4) ◽  
pp. 93-97
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


2021 ◽  
Author(s):  
Chao Meng ◽  
Paul Thrane ◽  
Fei Ding ◽  
Sergey Bozhevolnyi

Abstract Dynamic polarization control is crucial for emerging highly integrated photonic systems with diverse metasurfaces being explored for its realization1–6, but efficient, fast, and broadband operation remains a cumbersome challenge. While efficient optical metasurfaces (OMSs) involving liquid crystals suffer from inherently slow responses1, other OMS realizations are limited either in the operating wavelength range (due to resonances involved)2,3 or in the range of birefringence tuning4–6. Capitalizing on our development of piezoelectric micro-electro-mechanical system (MEMS) based dynamic OMSs7, we demonstrate reflective MEMS-OMS dynamic wave plates (DWPs) with high polarization conversion efficiencies (~ 75%), broadband operation (~ 100 nm near the operating wavelength of 800 nm), fast responses (< 0.4 milliseconds) and full-range birefringence control that enables completely encircling the Poincaré sphere along trajectories determined by the incident light polarization and DWP orientation. Demonstrated complete electrical control over light polarization opens new avenues in further integration and miniaturization of optical networks and systems8,9.


2021 ◽  
Vol 24 (04) ◽  
pp. 450-456
Author(s):  
M.A. Humayun ◽  
◽  
M.N. Hasan ◽  
M.A. Rashid ◽  
A. Kuwana ◽  
...  

This paper reports the effect of core diameter of optical fiber cables on stimulated Brillouin scattering loss, which is one of the major loss characteristics of an optical fiber communication system. Analysis of this loss characteristic at three windows of the operating wavelength of a laser has been carried out through a numerical approach. Among different types of optical fiber cables, multi-mode step index silica fiber, multi-mode graded index silica fiber and plastic fibers have been considered for the numerical analysis. The numerical analysis has been performed using MATLAB in this research work. Through the comparative analysis, it has been ascertained that the Brillouin scattering loss is not only affected by the operating wavelength, but also by the core diameter of the different type of the cable. From the investigation of the comparative analysis, it is revealed that Brillouin scattering loss declines with the application of multi-mode graded index silica fiber. However, in the plastic fiber category, plastic step index fiber offers better performance.


2021 ◽  
Vol 2112 (1) ◽  
pp. 012007
Author(s):  
Chong Song ◽  
Yong Huang ◽  
Yangdong Yan ◽  
Dongsen Cui ◽  
Gang Wang ◽  
...  

Abstract An improved Offner imaging spectrometer was proposed based on the optical system characteristics of Offner imaging spectrometer, which can ensure perfect imaging quality in a wider annular region. The operating wavelength of the improved Offner imaging spectrometer ranges from 900nm to 1700nm, and the magnification is 1. Improved Offner imaging spectrometer can be obtained by changing the meniscus lens position and further optimizing the design. The results indicate that the improved Offner imaging spectrometer can effectively improve compactness and lightweight, and reduce the difficulty of optical adjustment, which is conducive to the stability of practical application.


2021 ◽  
Vol 2109 (1) ◽  
pp. 012008
Author(s):  
Konttao Zhu ◽  
Hongxue Yang ◽  
Hui Du

Abstract An advanced post-processing scheme of reconfigurable dielectric infiltration into an annular slotted photonic crystal waveguide (ASPhCW) is proposed in this paper. Ionic liquids have had prominent effects in enhancing the optical properties of photonic crystals, especially in the aspect of tuning the transmission rate and velocity through optical materials. Using the two-dimensional plane wave expansion method, the flat band dispersion of the slow light is obtained and the tuning of the operating wavelength of the crystal could be realized by incoming polymer technology. The operating wavelength tuning range could be as large as 459.27nm and the group index could be tuned as high as 44.8 with a near zero group velocity dispersion. Using this method, a high group index equaling 45 with the bandwidth equaling 11.3nm and the normalized delay bandwidth product (NDBP) equaling 0.25 is realized. This incoming polymer technology provides an effective method of getting flat band of slow light flexibly and makes it possible to offer longer delay and low group velocity after fabrication.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5967
Author(s):  
Tiesheng Wu ◽  
Zhihui Liu ◽  
Weiping Cao ◽  
Huixian Zhang ◽  
Dan Yang ◽  
...  

All-dielectric Huygens’ metasurfaces have been widely used in wavefront manipulation through multipole interactions. Huygens’ metasurfaces utilize the superposition between an electric dipole and a magnetic dipole resonance to realize transmission enhancement and an accumulated 2π phase change. Benefiting from this unique property, we design and numerically investigate an all-dielectric Huygens’ metasurface exhibiting high-efficiency anomalous refraction. To suppress the substrate effect, the metasurface structure is submerged in a dielectric plate. We strategically placed two elements in four short periods to form a unit cell and adjusted the spacing between the two elements to effectively inhibit the interaction between elements. At the operating wavelength of 692 nm, the obtained anomalous transmission efficiency is over 90.7% with a diffraction angle of 30.84°. The performance of the proposed structure is far superior to most of the existing phase-gradient metasurface structures in the visible region, which paves the way for designing efficient beam deflection devices.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 399
Author(s):  
Rosen Georgiev ◽  
Yoana Chorbadzhiyska ◽  
Venelin Pavlov ◽  
Biliana Georgieva ◽  
Tsvetanka Babeva

In this study, an emphasis is put on vapor-sensitive Bragg stacks as an important class of optical sensors. All-niobia Bragg stacks were deposited by spin-coating of sol-gel Nb2O5 thin films alternated with mesoporous layers after proper design through optimization of operating wavelength and number of layers in the stack. Mesoporous Nb2O5 films with different morphology and identical structure were obtained using organic templates (Pluronics PE6200 and PE6800) and subsequent annealing. Transmittance measurements were performed as a detection method that offers technological simplicity and accuracy. It was demonstrated that stacks including PE6200 templated films exhibit higher sensitivity than stacks templated with PE6800. It was assumed and verified by computer-aided modelling of experimental data that mesoporous films prepared with addition of PE6200, although less porous, were more stable compared to those templated with PE6800, and did not collapse during the thermal treatment of the stacks. Furthermore, the reproducibility of optical response was studied by sorption and desorption cycles of acetone vapors. The suitability of all-niobia Bragg stacks for optical sensing of VOCs was discussed.


Sign in / Sign up

Export Citation Format

Share Document