Computer Aided Design and Manufacturing of Soft, Three-Dimensional, Multilayer, Biological Constructs via Laser Printing onto Laser Machined Composite Biopapers

2021 ◽  
Vol 11 ◽  
pp. 48-55
Author(s):  
Prajak Jariyapongpaiboon ◽  
Jirawan Chartpitak ◽  
Jaturong Jitsaard

Objectives: Infrazygomatic crest (IZC) surgical guides have been employed to prevent any avoidable complications during miniscrew insertion. The purpose of this study was to evaluate the accuracy of IZC miniscrew placement when using a surgical-guide developed by computer-aided design and manufacturing (CAD/CAM) techniques. Materials and Methods: Ten patients were scanned with cone-beam computed tomography for three-dimensional (3D) planning of IZC miniscrew placements. The upper arches were scanned separately, and virtual miniscrews were placed in the position planned by 3D software. The CAD/CAM surgical guides were designed and fabricated individually to enable accurate miniscrew placement. Subsequently, 20 self-drilling miniscrews were inserted at the right and left IZC areas using 5 CAD/CAM surgical guides (CS group, n = 10) and direct insertion (DI group, n = 10), respectively. Pre- and post-operative digital model images were compared, actual and planned miniscrew positions were superimposed and measured for 3D angular and distance deviations in the two groups. Comparisons between groups were made using the Kruskal–Wallis test. Results: In the CS group, the median coronal and sagittal angular deviations were 2.95 degrees (range 0.34–5.26 degrees) and 2.05 degrees (range 0.38–4.08 degrees), respectively, while the median coronal and apical deviations were 0.39 mm (range 0.24–0.51 mm) and 0.50 mm (range 0.16–0.66 mm). These deviations differed significantly from those of the DI group. Conclusion: The IZC CAD/CAM surgical guide has made it possible to control miniscrew placement with high precision.


Author(s):  
Zahid Faraz ◽  
Syed Waheed ul Haq ◽  
Liaqat Ali ◽  
Khalid Mahmood ◽  
Wasim Akram Tarar ◽  
...  

Metal sheets have the ability to be formed into nonstandard sizes and sections. Displacement-controlled computer numerical control press brakes are used for three-dimensional sheet metal forming. Although the subject of vendor neutral computer-aided technologies (computer-aided design, computer-aided process planning and computer-aided manufacturing) is widely researched for machined parts, research in the field of sheet metal parts is very sparse. Blank development from three-dimensional computer-aided design model depends on the bending tools geometry and metal sheet properties. Furthermore, generation and propagation of bending errors depend on individual bend sequences. Bend sequence planning is carried out to minimize bending errors, keeping in view the available tooling geometry and the sheet material properties’ variation. Research reported in this article attempts to develop a STEP-compliant, vendor neutral design and manufacturing framework for discrete sheet metal bend parts to provide a capability of bidirectional communication between design and manufacturing cycles. Proposed framework will facilitate the use of design information downstream at the manufacturing stage in the form of bending workplan, bending workingsteps and a feedback mechanism to the upstage product designer. In order to realize this vendor neutral framework, STEP (ISO 10303), AP203, AP207, and AP219 along with STEP-NC (ISO14649) have been used to provide a basis of vendor neutral data modeling.


2016 ◽  
Vol 9 (3) ◽  
pp. 235-241 ◽  
Author(s):  
Mark Fisher ◽  
Miguel Medina ◽  
Branko Bojovic ◽  
Edward Ahn ◽  
Amir H. Dorafshar

The complex three-dimensional relationships in congenital craniofacial reconstruction uniquely lend themselves to the ability to accurately plan and model the result provided by computer-aided design and manufacturing (CAD/CAM). The goal of this study was to illustrate indications where CAD/CAM would be helpful in the treatment of congenital craniofacial anomalies reconstruction and to discuss the application of this technology and its outcomes. A retrospective review was performed of all congenital craniofacial cases performed by the senior author between 2010 and 2014. Cases where CAD/CAM was used were identified, and illustrative cases to demonstrate the benefits of CAD/CAM were selected. Preoperative appearance, computerized plan, intraoperative course, and final outcome were analyzed. Preoperative planning enabled efficient execution of the operative plan with predictable results. Risk factors which made these patients good candidates for CAD/CAM were identified and compiled. Several indications, including multisuture and revisional craniosynostosis, facial bipartition, four-wall box osteotomy, reduction cranioplasty, and distraction osteogenesis could benefit most from this technology. We illustrate the use of CAD/CAM for these applications and describe the decision-making process both before and during surgery. We explore why we believe that CAD/CAM is indicated in these scenarios as well as the disadvantages and risks.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


Sign in / Sign up

Export Citation Format

Share Document