3d software
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 168)

H-INDEX

11
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Henry H. Hunter ◽  
Ukadike C. Ugbolue ◽  
Graeme G. Sorbie ◽  
Wing-Kai Lam ◽  
Fergal M. Grace ◽  
...  

Abstract The purpose of this study was to compare swing time and golf club angle parameters during golf swings using three, two dimensional (2D) low cost, Augmented-Video-based-Portable-Systems (AVPS) (Kinovea, SiliconCoach Pro, SiliconCoach Live). Twelve right-handed golfers performed three golf swings whilst being recorded by a high-speed 2D video camera. Footage was then analysed using AVPS-software and the results compared using both descriptive and inferential statistics. There were no significant differences for swing time and the golf phase measurements between the 2D and 3D software comparisons. In general, the results showed a high Intra class Correlation Coefficient (ICC > 0.929) and Cronbach’s Coefficient Alpha (CCA > 0.924) reliability for both the kinematic and temporal parameters. The inter-rater reliability test for the swing time and kinematic golf phase measurements on average were strong. Irrespective of the AVPS software investigated, the cost effective AVPS can produce reliable output measures that benefit golf analyses.


2022 ◽  
Author(s):  
Ou Zhang ◽  
Hongjun Hu ◽  
Huiling Zhang ◽  
Hui Zhao ◽  
Ding-fei Zhang ◽  
...  

Abstract To research the influences of process parameters on a special extrusion-shearmanufacture method for magnesium alloy rods, deform-3d software with finite elementsimulations has been used to analyze the material flows of deformed magnesium alloysAZ31B during the extrusion-shear (ES) process, as well as the grain sizes anddistribution of extrusion loads, stresses and strains, and blank temperatures. Temperaturefields, stress fields, strain fields and temperature fields varying with different blankpreheating temperatures, extrusion speed and extrusion ratios were simulated. Influences ofdifferent extrusion conditions and different die structures on microstructures of rods prepared by ES process has been researched. Extrusion forces decrease with the increasing extrusion temperatures, decreasing extrusion ratios, increasing die channel angles and decreasing friction coefficients. The flow velocities of metal in the ES die increase with development of ES process. Increasing the channel angles and reducing the friction factors would increase the outflow velocities of metal, but it has little effect on the uniformity of metal flow. The increase in friction and extrusion speed would increase the temperatures of the ES die. The ES process can prepare finer and more uniform microstructures than those prepared by direct extrusion under the same conditions.


The Knee ◽  
2022 ◽  
Vol 34 ◽  
pp. 1-8
Author(s):  
N. Degen ◽  
T. Daniel ◽  
J. Sass ◽  
A.M. Keppler ◽  
C. Linhart ◽  
...  

2022 ◽  
Vol 961 (1) ◽  
pp. 012031
Author(s):  
Rasool Kosaj ◽  
Rafid S Alboresha ◽  
Sadeq O Sulaiman

Abstract In this paper, the laboratory data were compared with computational fluid dynamics (CFD) Flow3D for predicting the beginning of sediment incipient motion in rigid boundary channel for two types of sands, irrigation, and sewer types, in rectangular flume (0.5*0.5)m cross-section. Tests were made for soil samples with different diameters, specific weights. The testing was performed in slopes ranging from 0.001-0.003 for irrigation types and 0.0025-0.025 for sewer types depending on the original parameter. The Flow-3D software has simulated the laboratory work using scouring models MPM and Nielsen. the relation between sediment incipient motion velocity, particle size, and channel bed slope was predicted. The results were relatively more than laboratory data for the MPM model, while grating convergence for Nielsen model, especially for small diameter sediment. Also, the laboratory results are more close to the results of Flow3D using the Nielsen model when the value of bed slope of the channel is greater, and vice versa when the slope decreases.


2022 ◽  
Vol 961 (1) ◽  
pp. 012033
Author(s):  
Ahmed S. Ali ◽  
Nahla M. Salim ◽  
Husam H. Baqir

Abstract Piles with helices are a kind of foundation that is capable of withstanding compression, tension, and lateral loads. However, for almost 25 years, this kind of Pile was widely used across the world. Its behaviour is unpredictable and terrifying, especially in Iraq. The present study analysed this kind of Pile using the finite element method. It was recommended that the helical pile geometry be modeled by numerical model technique and the computer program Plaxis 3D. The plaxis 3D software is a well-known geotechnical engineering tool that numerically analyses soil and simulates experimental work in terms of curve matching and outcomes. Furthermore, an analysis of variables was conducted. The primary variable research investigates the influence of the number of helices and the tapered helix distance under static and cyclic load. The final finding is that the more helices in a pile, the smaller the displacement (or amplitude) in comparison to one helix under the effect of uplift static and cyclic load. As a result that the effect of helix number on soil behaviour is more than the effect of changing the distances between helix.


2021 ◽  
Vol 21 ◽  
pp. e227903
Author(s):  
Hany Salah Eldin Eid ◽  
Omnia A. Elhiny

Aim: To evaluate the accuracy and the validity of orthodontic diagnostic measurements, as well as virtual tooth transformations using a generic open access 3D software compared to OrthoAnalyzer (3Shape) software; which was previously tested and proven for accuracy. Methods: 40 maxillary and mandibular single arch study models were duplicated and scanned using 3Shape laser scanner. The files were imported into the generic and OrthoAnalyzer software programs; where linear measurements were taken twice to investigate the accuracy of the program. To test the accuracy of the program format, they were printed, rescanned and imported into OrthAnalyzer. Finally, to investigate the accuracy of editing capabilities, linear and angular transformation procedures were performed, superimposed and printed to be rescanned and imported to OrthoAnalyzer for comparison. Results: There was no statistically significant difference between the two groups using the two software programs regarding the accuracy of the linear measurements (p>0.05). There was no statistically significant difference between the different formats among all the measurements, (p>0.05). The editing capabilities also showed no statistically significant difference (p>0.05). Conclusion: The generic 3D software (Meshmixer) was valid and accurate in cast measurements and linear and angular editing procedures. It can be used for orthodontic diagnosis and treatment planning without added costs.


2021 ◽  
Vol 930 (1) ◽  
pp. 012030
Author(s):  
J Zulfan ◽  
B M Ginting

Abstract The spillway rating curve of the Riam Kiwa Dam was investigated via theoretical formula, laboratory experiment, and 3D numerical modeling. It is an ogee type with two uncontrolled and five gated spillways with a total length of 77.5 m. The experiment was performed with a scale of 1:50, while the numerical modeling was conducted using FLOW-3D software. Several discharge values (16.67–2,652.7 m3/s) were tested and observed for two different scenarios of gate openings. For the low discharge in Scenario 1, the theoretical formula and FLOW-3D computed the rating curve less accurately with the error values greater than 10%. A similar phenomenon was observed in Scenario 2, where both theoretical formula and FLOW-3D predicted the rating curve accurately with error values less than 10% for the higher discharge. The discharges tend to be overestimated for the water depth values greater than 2 m giving the average discharge deviation of 6% for the PMF condition. FLOW-3D was found to calculate water depth for all scenarios accurately. It shows a promising approach between numerical simulation and physical modeling, to minimize laboratory model construction costs.


Author(s):  
Manas Metar

Abstract: Weight reduction techniques have been practiced by automobile manufacturers for the purpose of long range, less fuel consumption and achieving higher speeds. Due to the numerous set objectives that must be met, especially with respect to of car safety, automotive chassis design for vehicle weight reduction is a difficult task. In passenger classed vehicles using a monocoque chassis for vehicle construction has been a great solution for reducing overall wight of the vehicle body yet the structure is more stiffened and sturdier. However, some parts such as A-pillar, B-pillar, roof structure, floor pan can be further optimized to reduce more weight without affecting the strength needed for respective purposes. In this paper, the main focus is on reducing weight of the B-pillar. The B-pillar of a passenger car has been optimized using topology optimization and optimum weight reduction has been done. The modelling and simulation are done using SOLIDWORKS 3D software. The B-pillar in this study has been subjected to a static load of 140 KN. Further by providing goals and constraints the optimization was caried out. The results of Finite Element Analysis (FEA) of the original model are explained. The Topology Optimization resulted in reducing 53% of the original weight of the B-pillar. Keywords: Structural optimization techniques, weight reduction techniques, weight reduction technologies, need for weight reduction, Topology optimization, B-pillar design, structural optimization of B-pillar, Topology optimization of B-pillar.


Author(s):  
Ketaki H. Kulkarni ◽  
Ganesh A. Hinge

Abstract Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations. In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs. The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing. The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharge coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.


Sign in / Sign up

Export Citation Format

Share Document