CMG Singularity Avoidance in Attitude Control of a Flexible Spacecraft

Author(s):  
Raymond H. Kraft
2013 ◽  
Vol 446-447 ◽  
pp. 1160-1164
Author(s):  
Sahar Bakhtiari Mojaz ◽  
Hamed Kashani

Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in structure and plays an important role in the vibratory response of it. For improving the performance of systems, many studies have been carried out to predict measure and enhance the energy dissipation of friction. This paper presents a new approach to vibration reduction of flexible spacecraft with enhancing the energy dissipation of frictional dampers. Spacecraft is modeled as a 3 degree of freedom mass-spring system which is controlled by a lead compensator and System responses to step function evaluated. Coulomb and Jenkins element has been used as vibration suppression mechanisms in joints and sensitivity of their performance to variations of spacecraft excitation amplitude and damper properties is analyzed. The relation between frictional force and displacement derived and used in optimization of control performance. Responses of system and control effort needed for the vibration control are compared for these two frictional joints. It is shown that attitude control effort reduces, significantly with coulomb dampers and response of system improves. On the other hand, due to stick-slip phenomena in Jenkins element, we couldn’t expect the same performance from Jenkins damper.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Rui-Qi Dong ◽  
Yu-Yao Wu ◽  
Ying Zhang ◽  
Ai-Guo Wu

In this paper, an observer-based adaptive backstepping attitude maneuver controller (briefly, OBABC) for flexible spacecraft is presented. First, an observer is constructed to estimate the flexible modal variables. Based on the proposed observer, a backstepping control law is presented for the case where the inertia matrix is known. Further, an adaptive law is developed to estimate the unknown parameters of the inertia matrix of the flexible spacecraft. By utilizing Lyapunov theory, the proposed OBABC law can guarantee the asymptotical convergence of the closed-loop system in the presence of the external disturbance, incorporating with the L2-gain performance criterion constraint. Simulation results show that the attitude maneuver can be achieved by the proposed observer-based adaptive backstepping attitude control law.


Sign in / Sign up

Export Citation Format

Share Document