Multi-index Evaluation based Reinforcement Learning Method for Cyclic Optimization of Multiple Energy Utilization in Steel Industry

Author(s):  
Ze Wang ◽  
Linqing Wang ◽  
Zhongyang Han ◽  
Jun Zhao

in recent years the research has shown that modern farms may be helpful in producing the higher amount of yields along with superior quality. Moreover, this might also help in being least dependent about the labor force. Management of digital farming and site-specific precision are few solutions, which depends on the sensor technology. Moreover, the field data collection is the best only with feasible utilization of agriculture robots (AR). For improving agriculture productivity the sensor are placed across land (geographically), these sensor sends information to multiple robots for carrying certain task such as soughing, harvesting etc. This manuscript conducted survey of various industrial robots model for agriculture environment. Using industrial robots for agricultural purpose is practically not a viable option due to complex environment. Cognitive architecture that exhibits human cognitive thinking is used for learning dynamic and complex environment with good result. In recent times, Society of Mind Cognitive Architecture (SMCA) has proposed using multi-agent and (MA) and Reinforcement learning (RL) technique. However, it is generally difficult to solve Markov decision process (MDP) problem. Thus, cannot be used under dynamic mobility and complex nature of agriculture environment. This is because MDP has many variables. For overcoming research issues, this work present mobility aware Deep Q- Reinforcement Learning (MADQRL) cognitive learning method for Society of Mind Cognitive Architecture by combining both RL and DL technique. The MADQRL are utilized for controlling mobility and communication power of robots according to dynamic environment prerequisite. Experiment outcome shows the proposed MADQRL method attain better performance than existing cognitive learning method considering memory efficiency, learning efficiency, and energy utilization.


2009 ◽  
Vol 129 (7) ◽  
pp. 1253-1263
Author(s):  
Toru Eguchi ◽  
Takaaki Sekiai ◽  
Akihiro Yamada ◽  
Satoru Shimizu ◽  
Masayuki Fukai

Author(s):  
Gokhan Demirkiran ◽  
Ozcan Erdener ◽  
Onay Akpinar ◽  
Pelin Demirtas ◽  
M. Yagiz Arik ◽  
...  

2021 ◽  
Vol 11 (3) ◽  
pp. 1291
Author(s):  
Bonwoo Gu ◽  
Yunsick Sung

Gomoku is a two-player board game that originated in ancient China. There are various cases of developing Gomoku using artificial intelligence, such as a genetic algorithm and a tree search algorithm. Alpha-Gomoku, Gomoku AI built with Alpha-Go’s algorithm, defines all possible situations in the Gomoku board using Monte-Carlo tree search (MCTS), and minimizes the probability of learning other correct answers in the duplicated Gomoku board situation. However, in the tree search algorithm, the accuracy drops, because the classification criteria are manually set. In this paper, we propose an improved reinforcement learning-based high-level decision approach using convolutional neural networks (CNN). The proposed algorithm expresses each state as One-Hot Encoding based vectors and determines the state of the Gomoku board by combining the similar state of One-Hot Encoding based vectors. Thus, in a case where a stone that is determined by CNN has already been placed or cannot be placed, we suggest a method for selecting an alternative. We verify the proposed method of Gomoku AI in GuPyEngine, a Python-based 3D simulation platform.


2020 ◽  
Vol 53 (2) ◽  
pp. 8157-8162
Author(s):  
Thomas Göhrt ◽  
Fritjof Griesing-Scheiwe ◽  
Pavel Osinenko ◽  
Stefan Streif

Sign in / Sign up

Export Citation Format

Share Document