Flight Motion Recognition Method Based on Multivariate Phase Space Reconstruction and Approximate Entropy

Author(s):  
Jinyao Qu ◽  
Ming Lv ◽  
Yufei Yang ◽  
Yihao Tang
Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 999
Author(s):  
Yuting Pu ◽  
Honggeng Yang ◽  
Xiaoyang Ma ◽  
Xiangxun Sun

The recognition of the voltage sag sources is the basis for formulating a voltage sag governance plan and clarifying the responsibility for the accident. Aiming at the recognition problem of voltage sag sources, a recognition method of voltage sag sources based on phase space reconstruction and improved Visual Geometry Group (VGG) transfer learning is proposed from the perspective of image classification. Firstly, phase space reconstruction technology is used to transform voltage sag signals, generate reconstruction images of voltage sag, and analyze the intuitive characteristics of different sag sources from reconstruction images. Secondly, combined with the attention mechanism, the standard VGG 16 model is improved to extract the features completely and prevent over-fitting. Finally, VGG transfer learning model uses the idea of transfer learning for training, which improves the efficiency of model training and the recognition accuracy of sag sources. The purpose of the training model is to minimize the cross entropy loss function. The simulation analysis verifies the effectiveness and superiority of the proposed method.


Author(s):  
Shihui Lang ◽  
Zhu Hua ◽  
Guodong Sun ◽  
Yu Jiang ◽  
Chunling Wei

Abstract Several pairs of algorithms were used to determine the phase space reconstruction parameters to analyze the dynamic characteristics of chaotic time series. The reconstructed phase trajectories were compared with the original phase trajectories of the Lorenz attractor, Rössler attractor, and Chens attractor to obtain the optimum method for determining the phase space reconstruction parameters with high precision and efficiency. The research results show that the false nearest neighbor method and the complex auto-correlation method provided the best results. The saturated embedding dimension method based on the saturated correlation dimension method is proposed to calculate the time delay. Different time delays are obtained by changing the embedding dimension parameters of the complex auto-correlation method. The optimum time delay occurs at the point where the time delay is stable. The validity of the method is verified through combing the application of correlation dimension, showing that the proposed method is suitable for the effective determination of the phase space reconstruction parameters.


Sign in / Sign up

Export Citation Format

Share Document