A novel method of roller bearing fault feature extraction based on improved LMD and CZT

Author(s):  
Jiying Wang ◽  
Jiquan Hu ◽  
Lin Pan ◽  
Zhenxing Liu ◽  
Cui Li
Author(s):  
Huibin Lin ◽  
Jianmeng Tang ◽  
Chris Mechefske

Compressive sensing (CS) theory allows measurement of sparse signals with a sampling rate far lower than the Nyquist sampling frequency. This could reduce the burden of local storage and remote transmitting. The periodic impacts generated in rolling element bearing local faults are obviously sparse in the time domain. According to this sparse feature, a rolling element bearing fault feature extraction method based on CS theory is proposed in the paper. Utilizing the shift invariant dictionary learning algorithm and the periodic presentation characteristic of local faults of roller bearings, a shift-invariant dictionary of which each atom contains only one impact pattern is constructed to represent the fault impact as sparsely as possible. The limited degree of sparsity is utilized to reconstruct the feature components based on compressive sampling matching pursuit (CoSaMP) method, realizing the diagnosis of the roller bearing impact fault. A simulation was used to analyze the effects of parameters such as sparsity, SNR and compressive rate on the proposed method and prove the effectiveness of the proposed method.


Author(s):  
Juanjuan Shi ◽  
Ming Liang

Vibration analysis has been extensively used as an effective tool for bearing condition monitoring. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault feature (i.e. fault-induced impulses), periodic interferences from other mechanical/electrical components, and background noise. The incipient impulses which excite as well as modulate the resonance frequency of the system are easily masked by compounded effects of periodic interferences and noise, making it challenging to do a reliable fault diagnosis. As such, this paper proposes an envelope demodulation method termed short time fractal dimension (STFD) transform for fault feature extraction from such vibration signal mixture. STFD transform calculation related issues are first addressed. Then, by STFD, the original signal can be quickly transformed into a STFD representation, where the envelope of fault-induced impulses becomes more pronounced whereas interferences are partly weakened due to their morphological appearance differences. It has been found that the lower the interference frequency, the less effect the interference has on STFD representations. When interference frequency keeps increasing, more effects on STFD representations will be resulted. Such effects can be reduced by the proposed kurtosis-based peak search algorithm (KPSA). Therefore, bearing fault signature is kept and interferences are further weakened in the STFD-KPSA representation. The proposed method has been favourably compared with two widely used enveloping methods, i.e. multi-morphological analysis and energy operator, in terms of extracting impulse envelopes from vibration signals obscured by multiple interferences. Its performance has also been examined using both simulated and experimental data.


Sign in / Sign up

Export Citation Format

Share Document