Globally asymptotically stable position control for an autonomous mobile robot

Author(s):  
C. Tarin ◽  
H. Brugger ◽  
B. Tibken ◽  
E. P. Hofer
10.5772/5789 ◽  
2005 ◽  
Vol 2 (3) ◽  
pp. 20 ◽  
Author(s):  
Rerngwut Choomuang ◽  
Nitin Afzulpurkar

This paper describes position control of autonomous mobile robot using combination of Kalman filter and Fuzzy logic techniques. Both techniques have been used to fuse information from internal and external sensors to navigate a typical mobile robot in an unknown environment. An obstacle avoidance algorithm utilizing stereo vision technique has been implemented for obstacle detection. The odometry errors due to systematic-errors (such as unequal wheel diameter, the effect of the encoder resolution etc.) and/or non-systematic errors (ground plane, wheel-slip etc.) contribute to various motion control problems of the robot. During the robot moves, whether straight-line and/or arc, create the position and orientation errors which depend on systematic and/or non-systematic odometry errors. The main concern in most of the navigating systems is to achieve the real-time and robustness performances to precisely control the robot movements. The objective of this research is to improve the position and the orientation of robot motion. From the simulation and experiments, we prove that the proposed mobile robot moves from start position to goal position with greater accuracy avoiding obstacles.


2013 ◽  
Vol 133 (5) ◽  
pp. 502-509 ◽  
Author(s):  
Kouhei Komiya ◽  
Shunsuke Miyashita ◽  
Yutaka Maruoka ◽  
Yutaka Uchimura

2019 ◽  
Vol 4 (2) ◽  
pp. 349 ◽  
Author(s):  
Oluwatayo Michael Ogunmiloro ◽  
Fatima Ohunene Abedo ◽  
Hammed Kareem

In this article, a Susceptible – Vaccinated – Infected – Recovered (SVIR) model is formulated and analysed using comprehensive mathematical techniques. The vaccination class is primarily considered as means of controlling the disease spread. The basic reproduction number (Ro) of the model is obtained, where it was shown that if Ro<1, at the model equilibrium solutions when infection is present and absent, the infection- free equilibrium is both locally and globally asymptotically stable. Also, if Ro>1, the endemic equilibrium solution is locally asymptotically stable. Furthermore, the analytical solution of the model was carried out using the Differential Transform Method (DTM) and Runge - Kutta fourth-order method. Numerical simulations were carried out to validate the theoretical results. 


Author(s):  
Márcio Mendonça ◽  
Guilherme Bender Sartori ◽  
Lucas Botoni de Souza ◽  
Giovanni Bruno Marquini Ribeiro

Author(s):  
Jonathan Tapia ◽  
Eric Wineman ◽  
Patrick Benavidez ◽  
Aldo Jaimes ◽  
Ethan Cobb ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document