Constrained Clustering using Gaussian Processes

Author(s):  
Panagiotis A. Traganitis ◽  
Georgios B. Giannakis
1983 ◽  
Vol 20 (03) ◽  
pp. 529-536
Author(s):  
W. J. R. Eplett

A natural requirement to impose upon the life distribution of a component is that after inspection at some randomly chosen time to check whether it is still functioning, its life distribution from the time of checking should be bounded below by some specified distribution which may be defined by external considerations. Furthermore, the life distribution should ideally be minimal in the partial ordering obtained from the conditional probabilities. We prove that these specifications provide an apparently new characterization of the DFRA class of life distributions with a corresponding result for IFRA distributions. These results may be transferred, using Slepian's lemma, to obtain bounds for the boundary crossing probabilities of a stationary Gaussian process.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1079
Author(s):  
Vladimir Kazakov ◽  
Mauro A. Enciso ◽  
Francisco Mendoza

Based on the application of the conditional mean rule, a sampling-recovery algorithm is studied for a Gaussian two-dimensional process. The components of such a process are the input and output processes of an arbitrary linear system, which are characterized by their statistical relationships. Realizations are sampled in both processes, and the number and location of samples in the general case are arbitrary for each component. As a result, general expressions are found that determine the optimal structure of the recovery devices, as well as evaluate the quality of recovery of each component of the two-dimensional process. The main feature of the obtained algorithm is that the realizations of both components or one of them is recovered based on two sets of samples related to the input and output processes. This means that the recovery involves not only its own samples of the restored realization, but also the samples of the realization of another component, statistically related to the first one. This type of general algorithm is characterized by a significantly improved recovery quality, as evidenced by the results of six non-trivial examples with different versions of the algorithms. The research method used and the proposed general algorithm for the reconstruction of multidimensional Gaussian processes have not been discussed in the literature.


2018 ◽  
Vol 77 ◽  
pp. 226-236 ◽  
Author(s):  
Melih Kandemir ◽  
Taygun Kekeç ◽  
Reyyan Yeniterzi

Sign in / Sign up

Export Citation Format

Share Document