Building a Distributed XR Immersive Environment for data Visualization

Author(s):  
Fernando Beltran ◽  
Jing Geng
10.29007/mq54 ◽  
2019 ◽  
Author(s):  
Sri Teja Bodempudi ◽  
Sharad Sharma ◽  
Atma Sahu ◽  
Rajeev Agrawal

Human-centric situational awareness and visualization are needed for analyzing the big data in an efficient way. One of the challenges is to create an algorithm to analyze the given data without any help of other data analyzing tools. This research effort aims to identify how graphical objects (such as data-shapes) developed in accordance with an analyst's mental model can enhance analyst's situation awareness. Our approach for improved big data visualization is two-fold, focusing on both visualization and interaction. This paper presents the developed data and graph technique based on force- directed model graph in 3D. It is developed using Unity 3D gaming engine. Pilot testing was done with different data sets for checking the efficiency of the system in immersive environment and non-immersive environment. The application is able to handle the data successfully for the given data sets in data visualization. The currently graph can render around 200 to 300 linked nodes in real-time.


2001 ◽  
Vol 5 (1) ◽  
pp. 38-51 ◽  
Author(s):  
Michael Boyles ◽  
Shiaofen Fang

This paper describes an immersive system, called 3DIVE, for interactive volume data visualization and exploration inside the CAVE virtual environment. Combining interactive volume rendering and virtual reality provides a natural immersive environment for volumetric data visualization. More advanced data exploration operations, such as object level data manipulation, simulation and analysis, are supported in 3DIVE by several new techniques: volume primitives and texture regions are used for the rendering, manipulation, and collision detection of volumetric objects; the region based rendering pipeline is integrated with 3D image filters to provide an image-based mechanism for interactive transfer function design; a collaborative visualization module allows remote sites to collaborate over common datasets with passive or active view sharing. The system has been recently released as public domain software for CAVE/ImmersaDesk users, and is currently being actively used by a 3D microscopy visualization project.


Author(s):  
James Ong ◽  
Emilio Remolina ◽  
David Breeden ◽  
Brett Stroozas ◽  
John Mohammed
Keyword(s):  

Author(s):  
A. V. Voronin ◽  
G. N. Maltsev ◽  
M. Yu. Sokhen

Introduction:Data visualization quality is important for the work of a geographic information system operator, determining the conditions under which he or she makes decisions concerning the displayed data. Visual perception patterns associated with the golden ratio properties allow us to formulate a criterion for data visualization quality which would characterize the possibilities of the operator’s complex perception of the video data displayed on a control device screen in the form of an electronic card.Purpose:Substantiation of a data visualization quality criterion for geoinformation systems using the golden ratio properties, and the study of the conditions for providing good visualization quality for geodata and metadata on a video control device screen in accordance with the proposed criterion.Methods:A formal definition of the data visualization quality criterion in geoinformation systems using the coefficient of the screen area information coverage as an index whose optimal value corresponds to the mathematical definition of the golden ratio; and the study of the properties of this criterion. Results: Based on the conducted analysis of visual perception of video data and golden ratio properties during the data visualization, a criterion is proposed for data visualization quality, which uses the golden ratio properties and characterizes the possibilities of complex perception of video data in an electronic map form by a geographic information system operator. Iteration algorithms for choosing the video data display scale are developed, based on the visualization quality criterion and related to the golden ratio properties. These are the basic algorithm used for each geodata layer represented on the electronicmap, and an algorithm of successive analysis of various layers of the displayed geodata. The choice of a video data display scale in accordance with the developed algorithms can be preliminarily carried out by the system operator using the parameters of standard electronic maps and geodata/metadata sets typical for the current applied problem. We have studied how the scale of the geodata and metadata displayed on an electronic map affects their visualization quality on screens of various sizes. For the considered standard volumes of displayed geodata and metadata, the best visualization quality was achieved when they were displayed on a standard computer monitor, as opposed to a portable notebook or visualization screen.Practical relevance:The proposed criterion and the recommendations for choosing a screen size for the video monitoring device or the structures of the displayed geo-objects and metadata can be used in the design of geoinformation systems, or for preliminary choice of the displayed data structure by a geoinformation system operator.


Sign in / Sign up

Export Citation Format

Share Document