Using Ray Tracing to Model the Plasmaspheric Wave Field for Active Experiments in Space

Author(s):  
Justin C. Holmes ◽  
Gian Luca Delzanno ◽  
Christopher A.M. Jeffery ◽  
Patrick L. Colestock
2020 ◽  
Vol 177 (9) ◽  
pp. 4229-4245
Author(s):  
Karl Koch ◽  
Christoph Pilger

Abstract The explosion at the Ingolstadt oil refinery was widely recorded at seismic and infrasound stations deployed throughout Central Europe, to distances of several hundred to a thousand kilometres. This study focuses on the wealth of data recorded at infrasound stations in Central and Eastern Europe, while from the many detecting seismic stations within 400 km range, only seismic and seismo-acoustic arrivals at the close-in Gräfenberg array are considered here. Most of the infrasound stations are acoustic arrays enabling us to apply array processing techniques to determine relevant wave field parameters, such as backazimuth and slowness (resp. trace velocity). These parameters not only confirm the source direction, but also put constraints on the observed arrivals’ propagation modes. Wave field parameters suggest that we observe tropospheric arrivals to about 150 km and stratospheric and/or thermospheric returns for longer distances. 1D, 2D and 3D ray tracing predict tropospheric arrivals to westerly directions up to distances of 100 km, beyond which only thermospheric returns are obtained azimuth-independent beyond 250–300 km. Stratospheric returns do not follow from any of the increasingly complex ray tracing models. Parabolic equation propagation modeling however suggests that in a number of cases stratospheric ducting may be possible. However, neither the tropospheric seismo-acoustic arrivals at the Gräfenberg array nor the various arrivals at IMS station IS26 could be modeled. Therefore, the Ingolstadt explosion along with the observed infrasonic phases provide an excellent test bed to investigate our ability in realistically forecasting atmospheric wave propagation with existing algorithms and available atmospheric models.


2010 ◽  
Vol 50 (9) ◽  
pp. 095001 ◽  
Author(s):  
R.A. Cairns ◽  
V. Fuchs
Keyword(s):  

Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1639-1653 ◽  
Author(s):  
Wafik B. Beydoun ◽  
Timothy H. Keho

The paraxial ray method is an economical way of computing approximate Green’s functions in heterogeneous media. The method uses information from the standard dynamic ray‐tracing method to extrapolate the seismic wave field at receivers in the neighborhood of a ray so that two‐point ray tracing is not required. Applicability conditions are explicit: they define where asymptotic (high‐frequency) methods are valid, and how far away from the ray the extrapolation remains accurate. Increasing the density of the ray fan improves accuracy but increases computation time. However, since reasonable accuracy is obtained with relatively few rays, the method yields results similar to the two‐point ray‐tracing method, but at a fraction of the cost. Examples of wave‐field extrapolation from a ray to neighboring receivers show that traveltime extrapolation is more accurate than amplitude extrapolation. Accuracy, robustness, and efficiency tests, comparing paraxial ray synthetic seismograms with acoustic finite‐difference and elastic discrete‐wavenumber synthetics, are judged very satisfactory.


2000 ◽  
Vol 54 (3) ◽  
pp. 46-56
Author(s):  
K. Uchida ◽  
D. Da ◽  
C. K. Lee ◽  
T. Matsunaga ◽  
T. Imai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document