scholarly journals Autonomous catalytic hydrogen generator based on bioethanol steam reforming

2021 ◽  
2013 ◽  
Vol 2013.23 (0) ◽  
pp. 224-226
Author(s):  
Shinji KAMBARA ◽  
Akihiro TAKEYAMA ◽  
Meguimi MASUI ◽  
Tomonori MIURA ◽  
Nobuyuki HTSHINUMA

Author(s):  
KOUJI KINOUCHI ◽  
MASAHIRO KATOH ◽  
TOSHIHIDE HORIKAWA ◽  
TAKUSHI YOSHIKAWA ◽  
MAMORU WADA

A Palladium membrane was prepared by electro-less plating method on porous stainless steel. The catalytic hydrogen production by steam-reforming of biomass-derived ethanol (bio-ethanol) using a Pd membrane was analyzed by comparing it with those for the reaction using reagent ethanol (the reference sample). And the hydrogen permeability of the palladium membrane was investigated using the same palladium membrane ( H 2/ He selectivity = 249, at ΔP = 0.10 MPa, 873 K). As a result, for bio-ethanol, deposited carbon had a negative influence on the hydrogen-permeability of the palladium membrane and hydrogen purity. The sulfur content in the bio-ethanol may have promoted carbon deposition. By using a palladium membrane, it was confirmed that H 2 yield (%) was increased. It can be attributed that methane was converted from ethanol and produced more hydrogen by steam reforming, due to the in situ removal of hydrogen from the reaction location.


2016 ◽  
Vol 41 (42) ◽  
pp. 19475-19483 ◽  
Author(s):  
C. Fabiano ◽  
C. Italiano ◽  
A. Vita ◽  
L. Pino ◽  
M. Laganà ◽  
...  

2014 ◽  
Vol 93 ◽  
pp. 1-6
Author(s):  
Vincenzo Recupero ◽  
Lidia Pino ◽  
Antonio Vita ◽  
Cristina Italiano ◽  
Concetto Fabiano ◽  
...  

This paper covers the current activities at the CNR-ITAE aimed to developing a diesel steam reforming (SR) Hydrogen Generator based unit, dedicated to a Solid Oxide Fuel Cell (SOFC) in a power range until 1 kWe, to support auxiliary power units (APUs) for naval applications. The unit will is able to convert n-dodecane, as a diesel surrogate, with a nominal syngas production of 0.5 Nm3/h and a maximum hydrogen production of 1.5 Nm3/h.


Author(s):  
A. Iulianelli ◽  
◽  
G. Bagnato ◽  
A. Iulianelli ◽  
A. Vita Vita ◽  
...  

2020 ◽  
Author(s):  
Konstantin Khivantsev ◽  
Libor Kovarik ◽  
Nicholas R. Jaegers ◽  
János Szanyi ◽  
Yong Wang

<p>Atomically dispersed Pd +2 cations with ultra-dilute loading of palladium (0.005-0.05 wt%) were anchored on anatase titania and characterized with FTIR, microscopy and catalytic tests. CO infrared adsorption produces a sharp, narrow mono-carbonyl Pd(II)-CO band at ~2,130 cm<sup>-1</sup> indicating formation of highly uniform and stable Pd+2 ions on anatase titania. The 0.05 wt% Pd/TiO<sub>2</sub> sample was evaluated for methane combustion under dry and wet (industrially relevant) conditions in the presence and absence of carbon monoxide. Notably, we find the isolated palladium atoms respond dynamically upon oxygen concentration modulation (switching-on and switching off). When oxygen is removed from the wet methane stream, palladium ions are reduced to metallic state by methane and catalyze methane steam reforming instead of complete methane oxidation. Re-admission of oxygen restores Pd<sup>+2</sup> cations and switches off methane steam reforming activity. Moreover, 0.05 wt% Pd/TiO<sub>2</sub> is a competent CO oxidation catalyst in the presence of water steam with 90% CO conversion and TOF ~ 4,000 hr<sup>-1</sup> at 260 ⁰C. </p><p>More importantly, we find that diluting 0.05 wt% Pd/titania sample with titania to ultra-low 0.005 wt% palladium loading produces a remarkably active material for nitric oxide reduction with carbon monoxide under industrially relevant conditions with >90% conversion of nitric oxide at 180 ⁰C (~460 ppm NO and 150 L/g*hr flow rate in the presence of >2% water steam) and TOF ~6,000 hr<sup>-1</sup>. Pd thus outperforms state-of-the-art rhodium containing catalysts with (15-20 times higher rhodium loading; rhodium is ~ 3 times more expensive than palladium). Furthermore, palladium catalysts are more selective towards nitrogen and produce significantly less ammonia relative to the more traditional rhodium catalysts due to lower Pd amount nd lower water-gas-shift activity. Our study is the first example of utilizing ultra-low (0.05 wt% and less) noble metal (Pd) amounts to produce heterogeneous catalysts with extraordinary activity for nitric oxide reduction. This opens up a pathway to study other Pd, Pt and Rh containing materials with ultra-low loadings of expensive noble metals dispersed on titania or titania-coated oxides for industrially relevant nitric oxide abatement.</p>


Sign in / Sign up

Export Citation Format

Share Document