palladium membrane
Recently Published Documents


TOTAL DOCUMENTS

238
(FIVE YEARS 20)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Jonathan Mark Tailby

<p>One of the major challenges to be overcome before hydrogen fuelled vehicles can become commonplace is to store hydrogen with sufficient storage density to be practical. One approach to overcoming this challenge involves converting the hydrogen into a secondary fuel that can be stored more easily, such as ammonia. This introduces the challenge of efficiently retrieving the hydrogen from the secondary fuel with sufficient purity to be used in a polymer electrolyte membrane fuel cell. Putting the hydrogen producing reaction inside a membrane which is capable of filtering out hydrogen creates a membrane reactor which can increase hydrogen purity and can accelerate the reaction both kinetically and thermodynamically. The most effective materials currently known for hydrogen membranes are high palladium alloys of copper and silver. These are able to absorb hydrogen on the side with high hydrogen partial pressure and desorb that hydrogen on the side with low hydrogen pressure. Palladium metal is also able to interact with some catalysts by hydrogen spillover. Hydrogen is transported from the surface of the catalyst to the palladium surface more quickly than the hydrogen can desorb from the catalyst, this potentially accelerates both the catalysis and the hydrogen filtration. This research aimed to create a catalytic spillover membrane to extend the possibility of ammonia as a secondary fuel for hydrogen transport. In this research, several methods to produce a nickel catalyst on the surface of the palladium were explored: electrodeposition with and without a lithographic template; spray coating with nanoparticles; and preshaped nickel mesh and nickel foam. These potential catalysts were tested for ammonia decomposition. Templated electrodeposition created the most effective catalyst, but the nickel foam was most easily applied to the next stage of the research. The nickel foam catalyst was subsequently retested for ammonia decomposition in three scenarios: in contact with palladium foil; in a reactor with a palladium membrane; and in contact with a palladium membrane. The presence of a palladium membrane improved decomposition more than spillover contact between nickel foam catalyst and palladium, however, the combination of spillover contact with a palladium membrane increased the ammonia decomposition further. The rate of hydrogen flux through the palladium membranes was calculated for the experimental results. These were compared to flux values predicted by a model equation. The results showed that spillover contact between nickel catalyst and palladium membrane increased the hydrogen flux through the membrane.. The research outcomes have generated new knowledge and improved understanding of the morphology and role of nickel catalysts in accelerating ammonia decomposition. The research highlights the complex relationship between reactor design, gas flow paths, catalyst presentation and catalysis chemistry, suggesting promising areas for future research.</p>


2021 ◽  
Author(s):  
◽  
Jonathan Mark Tailby

<p>One of the major challenges to be overcome before hydrogen fuelled vehicles can become commonplace is to store hydrogen with sufficient storage density to be practical. One approach to overcoming this challenge involves converting the hydrogen into a secondary fuel that can be stored more easily, such as ammonia. This introduces the challenge of efficiently retrieving the hydrogen from the secondary fuel with sufficient purity to be used in a polymer electrolyte membrane fuel cell. Putting the hydrogen producing reaction inside a membrane which is capable of filtering out hydrogen creates a membrane reactor which can increase hydrogen purity and can accelerate the reaction both kinetically and thermodynamically. The most effective materials currently known for hydrogen membranes are high palladium alloys of copper and silver. These are able to absorb hydrogen on the side with high hydrogen partial pressure and desorb that hydrogen on the side with low hydrogen pressure. Palladium metal is also able to interact with some catalysts by hydrogen spillover. Hydrogen is transported from the surface of the catalyst to the palladium surface more quickly than the hydrogen can desorb from the catalyst, this potentially accelerates both the catalysis and the hydrogen filtration. This research aimed to create a catalytic spillover membrane to extend the possibility of ammonia as a secondary fuel for hydrogen transport. In this research, several methods to produce a nickel catalyst on the surface of the palladium were explored: electrodeposition with and without a lithographic template; spray coating with nanoparticles; and preshaped nickel mesh and nickel foam. These potential catalysts were tested for ammonia decomposition. Templated electrodeposition created the most effective catalyst, but the nickel foam was most easily applied to the next stage of the research. The nickel foam catalyst was subsequently retested for ammonia decomposition in three scenarios: in contact with palladium foil; in a reactor with a palladium membrane; and in contact with a palladium membrane. The presence of a palladium membrane improved decomposition more than spillover contact between nickel foam catalyst and palladium, however, the combination of spillover contact with a palladium membrane increased the ammonia decomposition further. The rate of hydrogen flux through the palladium membranes was calculated for the experimental results. These were compared to flux values predicted by a model equation. The results showed that spillover contact between nickel catalyst and palladium membrane increased the hydrogen flux through the membrane.. The research outcomes have generated new knowledge and improved understanding of the morphology and role of nickel catalysts in accelerating ammonia decomposition. The research highlights the complex relationship between reactor design, gas flow paths, catalyst presentation and catalysis chemistry, suggesting promising areas for future research.</p>


Author(s):  
Alexander A. Skrynnikov ◽  
Anastasia I. Fedoseeva ◽  
Natalia B. Morozova ◽  
Alexey I. Dontsov ◽  
Aleksander V. Vvedenskii ◽  
...  

The purpose of the article is to reveal the role of the thickness of the layer of the lead-palladium alloy deposited on a copper-palladium membrane in the processes of cathodic injection and the anodic extraction of atomic hydrogen.The objects of the study were ~ 4 μm thick copper-palladium film electrodes obtained by magnetron sputtering of a target with a composition of 56 at. % Cu and 44 at. % Pd. The studies were carried out by cyclic voltammetry and double step anodic-cathodic chronoamperometry in a deaerated 0.1 М H2SO4 aqueous solution. The calculation of the parameters of hydrogen permeability for samples of finite thickness was carried out by mathematical modelling.Cathodic injection and anodic extraction of atomic hydrogen were used to study the effect of the surface modification of the foil membrane of a Pd-Cu solid solution on the diffusion and kinetic parameters of hydrogen permeability. It was found that even a small addition of Pd-Pb (a 2 nm thick film) leads to a decrease in the concentration of atomic hydrogen and the diffusion coefficient in the foil. With an increase in the thickness of the coating there is an increase in the diffusion parameters of the hydrogen injection and extraction processes. However, the hydrogen permeability does not reach the level of the unmodified alloy. The main kinetic parameter, the hydrogen extraction rate constant, changes nonlinearly with an increase in the thickness of the coating.


2021 ◽  
Vol 168 ◽  
pp. 112641
Author(s):  
R.F. Knights ◽  
J. Benayas ◽  
K. Sabin ◽  
S. Ng ◽  
A. Wohlers ◽  
...  

2021 ◽  
Vol 31 (2) ◽  
pp. 230-232
Author(s):  
Viktor I. Bogdan ◽  
Aleksey E. Koklin ◽  
Igor I. Mishanin ◽  
Tatiana V. Bogdan ◽  
Nikolay V. Mashchenko ◽  
...  

Author(s):  
Roxanna S Delima ◽  
Mia Stankovic ◽  
Ben P. MacLeod ◽  
Arthur G. Fink ◽  
Michael B. Rooney ◽  
...  

Electrocatalytic palladium membrane reactors (ePMRs) use electricity and water to drive hydrogenation reactions without ever forming H2 gas. In these reactors, a palladium membrane physically separates electrochemical hydrogen formation in...


Vacuum ◽  
2021 ◽  
Vol 183 ◽  
pp. 109804
Author(s):  
Sunday Temitope Oyinbo ◽  
Tien-Chien Jen ◽  
Qingwei Gao ◽  
Xiaohua Lu

Sign in / Sign up

Export Citation Format

Share Document