Data Security and Privacy in Cloud Computing Using Different Encryption Algorithms

Author(s):  
Papri Ghosh ◽  
◽  
Vishal Thakor ◽  
Pravin Bhathawala ◽  
◽  
...  
Author(s):  
Parth Tandel ◽  
Abhinav Shubhrant ◽  
Mayank Sohani

Cloud Computing is widely regarded as the most radically altering trend in information technology. However, great benefits come with great challenges, especially in the area of data security and privacy protection. Since standard cloud computing uses plaintext, certain encryption algorithms were implemented in the cloud for security reasons, and ‘encrypted' data was then stored in the cloud. Homomorphic Encryption (HE), a modern kind of encryption strategy, is born as a result of this change. Primarily, the paper will focus on implementing a successful Homomorphic Encryption (HE) scheme for polynomials. Furthermore, the objective of the paper is to propose, produce and implement a method to convert the already implemented sequentially processing Homomorphic Encryption into parallel processing Homomorphic Encryption (HE) using a Parallel Processing concept (Partitioning, Assigning, Scheduling, etc) and thereby producing a better performing Homomorphic Encryption (HE) called Fully Homomorphic Encryption (FHE). Fully Homomorphic Encryption (FHE) is an encryption technique that can perform specific analytical operations, functions and methods on normal or encrypted data and can still perform traditional encryption results as performed on plaintext. The three major reasons for implementing Fully Homomorphic Encryption (FHE) are advantages like no involvement of third parties, trade-off elimination between privacy and security and quantum safety.


2014 ◽  
Vol 10 (7) ◽  
pp. 190903 ◽  
Author(s):  
Yunchuan Sun ◽  
Junsheng Zhang ◽  
Yongping Xiong ◽  
Guangyu Zhu

Author(s):  
Hicham Amellal ◽  
Abdelmajid Meslouhi ◽  
Abderahim El Allati ◽  
Annas El Haddadi

With the advancement of communication and information technology, the internet has become used as a platform for computing and not only a way of communications networks. Accordingly, the large spread of cloud computing led to the emergence of different privacy implications and data security complexities. In order to enhance data security in the cloud, the authors propose in this chapter the use of an encryption box, which includes different cryptosystems. In fact, this step gives the user the opportunities to encrypt data with an unknown algorithm and makes a private key before the storage of data in the host company servers. Moreover, to manage the encryption database, the authors propose a quantum approach in search based on Grover's algorithm.


Author(s):  
Amavey Tamunobarafiri ◽  
Shaun Aghili ◽  
Sergey Butakov

Cloud computing has been massively adopted in healthcare, where it attracts economic, operational, and functional advantages beneficial to insurance providers. However, according to Identity Theft Resource Centre, over twenty-five percent of data breaches in the US targeted healthcare. The HIPAA Journal reported an increase in healthcare data breaches in the US in 2016, exposing over 16 million health records. The growing incidents of cyberattacks in healthcare are compelling insurance providers to implement mitigating controls. Addressing data security and privacy issues before cloud adoption protects from monetary and reputation losses. This article provides an assessment tool for health insurance providers when adopting cloud vendor solutions. The final deliverable is a proposed framework derived from prominent cloud computing and governance sources, such as the Cloud Security Alliance, Cloud Control Matrix (CSA, CCM) v 3.0.1 and COBIT 5 Cloud Assurance.


2014 ◽  
Vol 16 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Dr.P.K. Rai ◽  
◽  
R.K. Bunkar ◽  
Vivekananda Mishra

2014 ◽  
Vol 9 (12) ◽  
Author(s):  
AL-Museelem Waleed ◽  
Chunlin Li ◽  
Naji Hasan.A.H

Sign in / Sign up

Export Citation Format

Share Document