scholarly journals Applications of a nodal-integration-based finite element method to non-linearc problems

Author(s):  
Y. JIA ◽  
J. ROUX ◽  
J. LEBLOND ◽  
J. Bergheau
Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1386
Author(s):  
Yabo Jia ◽  
Jean-Michel Bergheau ◽  
Jean-Baptiste Leblond ◽  
Jean-Christophe Roux ◽  
Raihane Bouchaoui ◽  
...  

This paper aims at introducing a new nodal-integration-based finite element method for the numerical calculation of residual stresses induced by welding processes. The main advantage of the proposed method is to be based on first-order tetrahedral meshes, thus greatly facilitating the meshing of complex geometries using currently available meshing tools. In addition, the formulation of the problem avoids any locking phenomena arising from the plastic incompressibility associated with von Mises plasticity and currently encountered with standard 4-node tetrahedral elements. The numerical results generated by the nodal approach are compared to those obtained with more classical simulations using finite elements based on mixed displacement–pressure formulations: 8-node Q1P0 hexahedra (linear displacement, constant pressure) and 4-node P1P1 tetrahedra (linear displacement, linear pressure). The comparisons evidence the efficiency of the nodal approach for the simulation of complex thermal–elastic–plastic problems.


2011 ◽  
Vol 223 ◽  
pp. 172-181 ◽  
Author(s):  
Francesco Greco ◽  
Domenico Umbrello ◽  
Serena Di Renzo ◽  
Luigino Filice ◽  
I. Alfaro ◽  
...  

FEM implicit formulation shows specific limitations in processes such as cutting, where large deformation results in a heavy mesh distortion. Powerful rezoning-remeshing algorithms strongly reduce the effects of such a limitation but the computational times are significantly increased and additional errors are introduced. Nodal Integration is a recently introduced technique that allows finite element method to provide more reliable results when mesh becomes distorted in traditional FEMs. Furthermore, volumetric locking phenomenon seems to be avoided by using this integration technique instead of other methods, such as the coupled formulations. In this paper, a comparison between a “classical” FEM simulation and the Nodal Integration one is carried out taking into account a simple orthogonal cutting process.


Geomorphology ◽  
2021 ◽  
Vol 381 ◽  
pp. 107666
Author(s):  
Jingjing Meng ◽  
Xue Zhang ◽  
Stefano Utili ◽  
Eugenio Oñate

Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document